Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The largest empty rectangle containing only a query object in Spatial Databases

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Let S be a set of n points in a fixed axis-parallel rectangle \(R\subseteq \Re^{2}\), i.e. in the two-dimensional space (2D). Assuming that those points are stored in an R-tree, this paper presents several algorithms for finding the empty rectangle in R with the largest area, sides parallel to the axes of the space, and containing only a query point q. This point can not be part of S, that is, it is not stored in the R-tree. All algorithms follow the basic idea of discarding part of the points of S, in such a way that the problem can be solved only considering the remaining points. As a consequence, the algorithms only have to access a very small portion of the nodes (disk blocks) of the R-tree, saving main memory resources and computation time. We provide formal proofs of the correctness of our algorithms and, in order to evaluate the performance of the algorithms, we run an extensive set of experiments using synthetic and real data. The results have demonstrated the efficiency and scalability of our algorithms for different dataset configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. computeER only computes LQMER, instead of computing all QMERs.

  2. http://libspatialindex.github.com/

  3. 1 K = 1,000 points

  4. http://rtreeportal.org

References

  1. Aggarwal A, Suri S (1987) Fast algorithms for computing the largest empty rectangle. In: Proceedings of SCG ’87. ACM, pp 278–290

  2. Augustine J, Das S, Maheshwari A, Nandy SC, Roy S, Sarvattomananda S (2010) Recognizing the largest empty circle and axis-parallel rectangle in a desired location. CoRR abs/1004.0558

  3. Augustine J, Das S, Maheshwari A, Nandy SC, Roy S, Sarvattomananda S (2010) Querying for the largest empty geometric object in a desired location. CoRR abs/1004.0558v2

  4. Augustine J, Putnam B, Roy S (2010) Largest empty circle centered on a query line. J Discrete Algorithms 8(2):143–153

    Article  Google Scholar 

  5. Augustine J, Das S, Maheshwari A, Nandy SC, Roy S, Sarvattomananda S (2013) Localized geometric query problems. Comput Geom 46(3):340–357

    Article  Google Scholar 

  6. Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The R*-tree: An efficient and robust access method for points and rectangles, In: Garcia-Molina H, Jagadish HV (eds) Proceedings of SIGMOD ’09. ACM Press, pp 322–331

  7. Böhm C, Kriegel H.-P (2001) Determining the convex hull in large multidimensional databases. In: Proceedings of DaWaK ’01. Springer, pp 294–306

  8. Börzsönyi S, Kossmann D, Stocker K (2001) The skyline operator. In: Proccedings of ICDE ’01. pp 421–430

  9. Chazelle B, Drysdalet RL, Lee DT (1986) Computing the largest empty rectangle. SIAM J Comput 15:300–315

    Article  Google Scholar 

  10. Chew LP, Drysdale RLS (1986) Finding largest empty circles with location constraints. Tech. Rep. PCS-TR86-130, Dartmouth College, Computer Science, Hanover, NH

  11. Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2004) Algorithms for processing k-closest-pair queries in spatial databases. Data Knowl Eng 49(1):67–104

    Article  Google Scholar 

  12. De M, Nandy SC (2011) Inplace algorithm for priority search tree and its use in computing largest empty axis-parallel rectangle. CoRR abs/1104.3076

  13. Dellis E, Seeger B (2007) Efficient computation of reverse skyline queries. In: Proceedings of VLDB ’07. ACM, pp 291–302

  14. Edmonds J, Gryz J, Liang D, Miller RJ (2003) Mining for empty spaces in large data sets. Theor Comput Sci 296:435–452

    Article  Google Scholar 

  15. Gaede V, Günther O (1998) Multidimensional access methods. ACM Comput Surv 30(2):170–231

    Article  Google Scholar 

  16. Gutiérrez G, Paramá J (2012) Finding the largest empty rectangle containing only a query point in large multidimensional databases. In: Proceedings of SSDBM 2012. Springer

  17. Guttman A (1984) R-trees: A dynamic index structure for spatial searching. In: Proceedings of SIGMOD ’84, ACM, pp 47–57

  18. Hjaltason GR, Samet H (1998) Incremental distance join algorithms for spatial databases. In: Proceedings of SIGMOD ’98, ACM, pp 237–248

  19. Kaplan H, Mozes S, Nussbaum Y, Sharir M (2012) Submatrix maximum queries in monge matrices and monge partial matrices, and their applications. In: Proceedings of SODA 2012, SIAM, pp 338–355

  20. Kaplan H, Sharir M (2012) Finding the maximal empty disk containing a query point. In: Proceedings of SCG 2012, SoCG ’12. ACM, New York, NY, USA, pp 287–292

  21. Manolopoulos Y, Nanopoulos A, Papadopoulos AN, Theodoridis Y (2005) R-Trees: Theory and Applications (Advanced information and knowledge processing). Springer-Verlag New York, Inc., Secaucus, NJ, USA

    Google Scholar 

  22. Minati D, Nandy S (2011) Space-efficient algorithms for empty space recognition among a point set in 2d and 3d. In: Proceedings of the 23rd annual Canadian conference on computational geometry, pp 347–353

  23. Naamad A, Lee DT, Hsu W-L (1984) On the maximum empty rectangle problem. Discrete Appl Math 8:267–277

    Article  Google Scholar 

  24. Nandy S, Bhattacharya B (1998) Maximal empty cuboids among points and blocks. Comput Math Appl 36(3):11–20

    Article  Google Scholar 

  25. Oracle spatial user’s guide and reference (2012) http://docs.oracle.com/html/A88805_01/sdo_intr.htm

  26. Orlowski M (1990) A new algorithm for the largest empty rectangle problem. Algorithmica 5:65–73

    Article  Google Scholar 

  27. Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems. ACM T Database Syst 30(1):41–82

    Article  Google Scholar 

  28. Postgis 1.5.3 manual (2012) http://postgis.refractions.net/documentation/manual-1.5/

  29. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. SIGMOD Rec 24(2):71–79

    Article  Google Scholar 

  30. Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall

  31. Toussaint GT (1983) Computing largest empty circles with location constraints. In J Comput Inf Sci 12(5):347–358

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, for the first author, by the project MECESUP UBB0704 (Chile). For the second and third authors by Ministerio de Educación y Ciencia [TIN2009-14560-C03-02] and [TIN2010-21246-C02-01], and Xunta de Galicia [grant 2010/17]. Finally, for the last author, his work has been supported by the Ministerio de Educación y Ciencia [TIN2008-003063], and the Junta de Andalucía research project [TIC-06114]. We would like to thank Yannis Manolopoulos and Juan Ramón López Rodríguez for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Gutiérrez.

Additional information

A preliminary partial version of this work appeared in [16].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, G., Paramá, J.R., Brisaboa, N. et al. The largest empty rectangle containing only a query object in Spatial Databases. Geoinformatica 18, 193–228 (2014). https://doi.org/10.1007/s10707-013-0178-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-013-0178-y

Keywords