Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Recent developments and ubiquitous use of global positioning devices have revolutionised movement ecology. Scientists are able to collect increasingly larger movement datasets at increasingly smaller spatial and temporal resolutions. These data consist of trajectories in space and time, represented as time series of measured locations for each tagged animal. Such data are analysed and visualised using methods for estimation of home range or utilisation distribution, which are often based on 2D kernel density in geographic space. These methods have been developed for much sparser and smaller datasets obtained through very high frequency (VHF) radio telemetry. They focus on the spatial distribution of measurement locations and ignore time and sequentiality of measurements. We present an alternative geovisualisation method for spatio-temporal aggregation of trajectories of tagged animals: stacked space-time densities. The method was developed to visually portray temporal changes in animal use of space using a volumetric display in a space-time cube. We describe the algorithm for calculation of stacked densities using four different decay functions, normally used in space use studies: linear decay, bisquare decay, Gaussian decay and Brownian decay. We present a case study, where we visualise trajectories of lesser black backed gulls, collected over 30 days. We demonstrate how the method can be used to evaluate temporal site fidelity of each bird through identification of two different temporal movement patterns in the stacked density volume: spatio-temporal hot spots and spatial-only hot spots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that [26, 27] present the formula with a square root in the denominator, which corresponds to a 1D (not 2D, as required) Gaussian distribution. Their derivations are not affected by this.

References

  1. Andrienko G, Andrienko N (2010) A general framework for using aggregation in visual exploration of movement data. Cartogr J 47(1):22–40

    Article  Google Scholar 

  2. Benhamou S (2011) Dynamic approach to space and habitat use based on biased random bridges. PLoS ONE 6(1):e14592

    Article  Google Scholar 

  3. Benhamou S, Cornélis D (2010) Incorporating movement behavior and barriers to improve kernel home range space use estimates. J Wildl Manag 74(6):1353–1360

    Article  Google Scholar 

  4. Benhamou S, Riotte-Lambert L (2012) Beyond the utilization distribution: identifying home range areas that are intensively exploited or repeatedly visited. Ecol Model 227(2012):112–116

    Article  Google Scholar 

  5. Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson T (2006) Effects of sampling regime on the mean and variance of home range estimates. J Anim Ecol 75:1393–1405

    Article  Google Scholar 

  6. Bouten W, Baaij E, Shamoun-Baranes J, Camphuysen KJ (2013) A flexible GPS tracking system for studying bird behaviour at multiple scales. J Ornithol 154:571–580

    Article  Google Scholar 

  7. Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Flacron RW, Hartl P, Roland K, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698

    Article  Google Scholar 

  8. Brillinger DR, Preisler HK, Ager AA, Kie JG (2004) An exploratory data analysis (EDA) of the paths of moving animals. J Stat Plan Infer 122:43–63

    Article  Google Scholar 

  9. Brito JC (2003) Seasonal variation in movements, home range, and habitat use by male vipera latastei in Northern Portugal. J Herpetol 37(1):155–160

    Article  Google Scholar 

  10. Bullard F (1999) Estimating the home range of an animal: a Brownian bridge approach. MSc thesis. University of North Carolina at Chapel Hill

  11. Callahan SP, Callahan JH, Scheidegger CE, Silva TC (2008) Direct volume rendering. Comput Sci Eng 2008(1):88–92

    Article  Google Scholar 

  12. Camphuysen K (2013) A historical ecology of two closely related gull species (Laridae): multiple adaptations to a man-made environment. PhD thesis, University of Groningen, The Netherlands

  13. Demšar U, Virrantaus K (2010) Space-time density of trajectories: exploring spatiotemporal patterns in movement data. Int J Geogr Inf Sci 24(10):1527–1542

    Article  Google Scholar 

  14. Downs JA, Horner MW (2009) A characteristic-hull based method for home range estimation. Trans GIS 13(5–6):527–537

    Article  Google Scholar 

  15. Downs JA (2010) Time-geographic density estimation for moving point objects. In: Fabrikant SI et al. (eds) Proceedings of GIScience 2010. Lecture Notes in Computer Science, 6292. 16–26

  16. Downs JA, Horner MW, Tucker AD (2011) Time-geographic density estimation for home range analysis. Ann GIS 17(3):163–171

    Article  Google Scholar 

  17. Downs JA, Horner MW (2012) Analysing infrequently sampled animal tracking data by incorporating generalized movement trajectories with kernel density estimation. Comput Environ Urban Syst 36:302–310

    Article  Google Scholar 

  18. Fieberg J (2007) Kernel density estimators of home range: smoothing and the autocorrelation red herring. Ecology 88(4):1059–1066

    Article  Google Scholar 

  19. Getz WM, Wilmers CC (2004) A local nearest-neighbour convex-hull construction of home ranges and utilization distributions. Ecography 27:489–505

    Article  Google Scholar 

  20. Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC (2007) LoCoH: nonparametric kernel methods for constructing home ranges and utilization distributions. PLoS ONE 2:e207

    Article  Google Scholar 

  21. Ghisla A (2009) Limitation and applicability of methods for home range estimation in respect to auto-ecological factors and data quality. MSc thesis (in Italian). Insubria University, Varese, Italy

  22. Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross M (2005) Real-time ray-casting and advanced shading of discrete isosurfaces. Eurographics 24(3)

  23. Hägerstrand T (1970) What about people in regional science? Pap Reg Sci Assoc 24:7–21

    Article  Google Scholar 

  24. Hengl T, van Loon EE, Shamoun-Baranes J, Bouten W (2008) Geostatistical analysis of GPS trajectory data: space-time densities. Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in natural Resources and Environmental Sciences, 17-24. Shanghai, June 2008

  25. Holden C (2006) Inching toward movement ecology. Science 313:779–782

    Article  Google Scholar 

  26. Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian bridges. Ecology 88(9):2354–2363

    Article  Google Scholar 

  27. Horne JS, Garton EO, Krone SM, Lewis JS (2007b) Analyzing animal movements using Brownian bridges - appendix A: derivation of Brownian bridge probability distribution. Ecol Arch E088-142-A1

  28. Horne JS, Garton EO, Sager-Fradkin KA (2007) Correcting home-range models for observation bias. J Wildl Manag 71(3):996–1001

    Article  Google Scholar 

  29. Isenberg T, Isenberg P, Chen J, Sedlmair M, Möller T (2013) A Systematic review on the practice of evaluating visualization. IEEE Trans Vis Comput Graph 19(12):2818–2827

    Article  Google Scholar 

  30. Kie JG, Matthiopoulos J, Fieberg J, Powell RA, Cagnacci F, Mitchell MS, Gaillard J-M, Moorcroft PR (2010) The home-range concept: are traditional estimators still relevant with modern telemetry technology? Phil Trans R Soc Lond Ser B Biol Sci 365:2221–2231

    Article  Google Scholar 

  31. Kraak M-J (2008) Geovisualization and time – new opportunities for the space-time cube. In: Dodge M, McDerby M, Turner M (eds) Geographic visualization: concepts, tools and applications. Wiley, Chichester, pp 293–306

    Chapter  Google Scholar 

  32. Kranstauber B, Kays R, LaPoint SD, Wikelski M, Safi K (2012) A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J Anim Ecol 81:738–746

    Article  Google Scholar 

  33. Krisp JM, Peters S, Burkert F (2013) Visualizing crowd movement patterns using a directed kernel density estimation. Earth Observation of Global Changes (EOGC), Lecture Notes in Geoinformation and Cartography 255–268

  34. Laver PN, Kelly MJ (2008) A critical review of home range studies. J Wildl Manag 72(1):290–298

    Article  Google Scholar 

  35. Long JA, Nelson TA (2011) Time Geography and Wildlife Home Range Delineation. J Wildl Manag 76(2):407–413

    Article  Google Scholar 

  36. Long JA, Nelson TA (2013) A review of quantitative methods for movement data. Int J Geogr Inf Sci 27(2):292–318

    Google Scholar 

  37. Manly BF, McDonald L, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical design and analysis for field studies 2nd ed. Kluwer Academic Publishers

  38. Minnotte MC, Sain SR, Scott DW (2008) Multivariate visualization by density estimation. In: Chen C, Härdle W, Unwin A (eds) Handbook of data visualization. Springer handbooks of computational statistics. Springer Verlag, Berlin-Heidelberg, pp 390–413

    Google Scholar 

  39. Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: and exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans GIS 14(3):223–239

    Article  Google Scholar 

  40. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 154–177

    Google Scholar 

  41. Otis DL, White GC (1999) Autocorrelation of location estimates and the analysis of radiotracking data. J Wildl Manag 63(3):1039–1044

    Article  Google Scholar 

  42. Riotte-Lambert L, Benhamou S, Chamaillé-Jammes S (2013) Periodicity analysis of movement recursions. J Theor Biol 317(2013):238–243

    Article  Google Scholar 

  43. Ropert-Coudert Y, Beaulieu M, Hanuise N, Kato A (2009) Diving into the world of biologging. Endanger Species Res 10:21–27

    Article  Google Scholar 

  44. Rosenberg DK, McKelvey KS (1999) Estimation of habitat selection for central-place foraging animals. J Wildl Manag 63(3):1028–1038

    Article  Google Scholar 

  45. Seaman DE, Powell RA (1996) An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77(7):2075–2085

    Article  Google Scholar 

  46. Shamoun-Baranes J, van Loon E, van Gasteren H, van Belle J, Bouten W, Buurma L (2006) A comparative analysis of the influence of weather on the flight altitudes of birds. Bull Am Meteorol Soc 87:47–61

    Article  Google Scholar 

  47. Shamoun-Baranes J, van Loon EE, Purves RS, Speckmann B, Weiskopf D, Camphuysen CJ (2012) Analysis and visualization of animal movement. Biol Lett 8(1):6–9

    Article  Google Scholar 

  48. Shamoun-Baranes J, Bom R, van Loon EE, Ens BJ, Oosterbeek K, Bouten W (2012) From sensor data to animal behaviour: an oystercatcher example. PLoS ONE 7:e37997

    Article  Google Scholar 

  49. Scheepens R, Willems N, van de Wetering H, van Wijk JJ (2011) Interactive visualization of multivariate trajectory data with density maps. IEEE Pac Visualisation Symp 2001:147–154

    Google Scholar 

  50. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York

    Book  Google Scholar 

  51. Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: behaviour and ecology. University of Chicago Press, Chicago

    Book  Google Scholar 

  52. Van Deelen TR, Campa H III, Hamady M, Haufler JB (1998) Migration and seasonal range dynamics of deer using adjacent deeryards in northern Michigan. J Wildl Manag 62(1):205–213

    Article  Google Scholar 

  53. Walter DW, Beringer J, Hansen LP, Fischer JW, Millspaugh JJ, Vercauteren KC (2011) Factors affecting space use overlap by white-tailed deer in an urban landscape. Int J Geogr Inf Sci 25(3):379–392

    Article  Google Scholar 

  54. Wand MP, Jones MC (1993) Comparison of smoothing parametrizations in bivariate kernel density estimation. J Am Stat Assoc 88(422):520–528

    Article  Google Scholar 

  55. Worton BJ (1987) A review of models of home range for animal movement. Ecol Model 38:277–298

    Article  Google Scholar 

  56. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1):164–168

    Article  Google Scholar 

  57. Wu Y, Qu H, Chung K-K, Chan M-Y, Zhou H (2010) Quantitative effectiveness measures for direct volume rendered images. IEEE Pac Visualisation Symp 2010:1–8

    Google Scholar 

Download references

Acknowledgments

Research presented in this paper is part of the collaboration under the COST (European Cooperation in Science and Technology) ICT Action IC0903, “Knowledge Discovery from Moving Objects (MOVE)” and facilitated by the Lorentz Center workshop on “Analysis and visualization of moving objects” (http://www.lorentzcenter.nl/lc/web/2011/453/info.php3?wsid=453). We thank Kees Camphuysen (NIOZ) and Arnold Gronert for all the field work and sharing expert knowledge related to the Lesser black backed gull project. The tracking infrastructure is facilitated by the BiG Grid infrastructure for eScience (www.biggrid.nl). The authors would like to thank Dr Jed Long and Dr Iain Dillingham from the Centre for Geoinformatics, University of St Andrews, for useful discussions in preparation of revisions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urška Demšar.

Appendix—algorithm for calculation of stacked space-time densities

Appendix—algorithm for calculation of stacked space-time densities

This appendix presents the pseudo code of our algorithm.

figure efigure efigure e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demšar, U., Buchin, K., van Loon, E.E. et al. Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time. Geoinformatica 19, 85–115 (2015). https://doi.org/10.1007/s10707-014-0207-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-014-0207-5

Keywords