Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hardware real-time individualised blood glucose predictor generator based on grammars and cartesian genetic programming

  • Research
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

In this paper, we introduce a novel grammar-guided technique based on genetic programming for on-chip, real-time, configurable hardware design of model generators on an FPGA. The technique integrates grammar-based design, Cartesian Genetic Programming, and a (1+\(\lambda\)) Evolutionary Strategy and is demonstrated through the implementation of a wearable hardware predictor for blood glucose prediction. People with diabetes need to manage their blood glucose levels to prevent life-threatening situations and long-term complications. Effective glucose management requires accurate blood glucose predictions, yet most existing methods rely on heuristic estimators. This system enables the training and testing of personalized models using real patient data. We validated the approach by generating and evaluating models for 30- and 60-min forecasting predictions on ten patients, creating a total of 200 models. The system achieved state-of-the-art results, with 98% and 90% of predictions falling within clinically acceptable regions according to Clarke error grid analysis, for 30- and 60-min horizons, respectively. Unlike software implementations, our technique does not suffer from hardware limitations and provides an efficient, adaptable solution through wearable hardware with minimal errors and low power consumption. This is the first demonstration of combining Cartesian Genetic Programming with a hardware implementation for grammar-based blood glucose prediction, potentially enabling real-time embedded systems for portable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availibility

Data set is available at HUPA-UCM Diabetes Dataset [29].

Notes

  1. https://www.freestyle.abbott/uk-en/home.html.

References

  1. S. Kalra, B. Jena, R. Yeravdekar, Emotional and psychological needs of people with diabetes. Indian J. Endocrinol. Metab. 22, 696 (2018). https://doi.org/10.4103/ijem.IJEM_579_17

    Article  Google Scholar 

  2. D.C. Klonoff, Personalized medicine for diabetes. J. Diabetes Sci. Technol. 2(3), 335–341 (2008). https://doi.org/10.1177/193229680800200301. (PMID: 19885196)

    Article  Google Scholar 

  3. H.R. Zohouri, N. Maruyamay, A. Smith, M. Matsuda, S. Matsuoka, Evaluating and optimizing opencl kernels for high performance computing with fpgas, 409–420 (2016). https://doi.org/10.1109/SC.2016.34

  4. M. O’Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001). https://doi.org/10.1109/4235.942529

    Article  Google Scholar 

  5. J.F. Miller, Cartesian Genetic Programming (Springer, Berlin, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-17310-3

    Book  Google Scholar 

  6. J. Cano, J.I. Hidalgo, O. Garnica, J. Lanchares, Hardware design of a model generator based on grammars and cartesian genetic programming for blood glucose prediction. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation. GECCO ’23 Companion, 55–56. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3583133.3596427

  7. M.Z. Wadghiri, A. Idri, T. El Idrissi, H. Hakkoum, Ensemble blood glucose prediction in diabetes mellitus: A review. Comput. Biol. Med. 147, 105674 (2022)

    Article  Google Scholar 

  8. R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M.O. Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering et al., Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905 (2004)

    Article  Google Scholar 

  9. C.D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, C. Cobelli, The uva/padova type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8(1), 26–34 (2014)

    Article  Google Scholar 

  10. T. Prud’Homme, A. Bock, G. François, D. Gillet, Preclinically assessed optimal control of postprandial glucose excursions for type 1 patients with diabetes. In: 2011 IEEE International Conference on Automation Science and Engineering, 702–707 (2011). IEEE

  11. S. Contador, J.M. Velasco, O. Garnica, J.I. Hidalgo, Glucose forecasting using genetic programming and latent glucose variability features. Appl. Soft Comput. 110, 107609 (2021). https://doi.org/10.1016/j.asoc.2021.107609

    Article  Google Scholar 

  12. J.I. Hidalgo, J.M. Colmenar, G. Kronberger, S.M. Winkler, O. Garnica, J. Lanchares, Data based prediction of blood glucose concentrations using evolutionary methods. J. Med. Syst. 41(9), 142 (2017). https://doi.org/10.1007/s10916-017-0788-2

    Article  Google Scholar 

  13. S. Contador, J.M. Colmenar, O. Garnica, J.M. Velasco, J.I. Hidalgo, Blood glucose prediction using multi-objective grammatical evolution: analysis of the“agnostic’’and“what-if’’scenarios. Genet. Program Evolvable Mach. 23(2), 161–192 (2022). https://doi.org/10.1007/s10710-021-09424-6

    Article  Google Scholar 

  14. D. Joedicke, G. Kronberger, J.M. Colmenar, S.M. Winkler, J.M. Velasco, S. Contador, J.I. Hidalgo, Analysis of the performance of genetic programming on the blood glucose level prediction challenge 2020. In: KDH@ECAI (2020)

  15. W. Wong, G. Lenin, T. Tan, C. Ali, Euclidean space data projection classifier with cartesian genetic programming (cgp). J. Telecommun. Electron. Comput. Eng. 10(1–12), 9–12 (2018)

    Google Scholar 

  16. S. Harding, J. Leitner, J. Schmidhuber, Cartesian genetic programming for image processing. Genetic Program. Theory Practice X, 31–44 (2013)

    Google Scholar 

  17. M. Mahsal Khan, A. Masood Ahmad, G. Muhammad Khan, J.F. Miller, Fast learning neural networks using cartesian genetic programming. Neurocomputing 121, 274–289 (2013) https://doi.org/10.1016/j.neucom.2013.04.005 . Advances in Artificial Neural Networks and Machine Learning

  18. Z. Vasicek, L. Sekanina, Hardware accelerators for cartesian genetic programming. In: Genetic Programming: 11th European Conference, EuroGP 2008, Naples, Italy, March 26-28, 2008. Proceedings 11, pp. 230–241 (2008). Springer

  19. Z. Vašíček, L. Sekanina, Hardware accelerator of cartesian genetic programming with multiple fitness units. Comput. Inform. 29(6+), 1359–1371 (2010)

    Google Scholar 

  20. O. Garnica, K. Glette, J. Torresen, Comparing three online evolvable hardware implementations of aclassification system. Genetic Program. Evol. Mach. (2017)

  21. H.N. Mhaskar, S.V. Pereverzyev, M.D. Walt, A deep learning approach to diabetic blood glucose prediction. Front. Appl. Math. Stat. (2017). https://doi.org/10.3389/fams.2017.00014

    Article  Google Scholar 

  22. F. Tena, O. Garnica, J. Lanchares, J.I. Hidalgo, Ensemble models of cutting-edge deep neural networks for blood glucose prediction in patients with diabetes. Sensors (2021). https://doi.org/10.3390/s21217090

    Article  Google Scholar 

  23. C. Pérez-Gandía, A. Facchinetti, G. Sparacino, C. Cobelli, E.J. Gómez, M. Rigla, A. De Leiva, M.E. Hernando, Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Therap. 12, 81–8 (2010). https://doi.org/10.1089/dia.2009.0076

    Article  Google Scholar 

  24. A. Aliberti, I. Pupillo, S. Terna, E. Macii, S. Di Cataldo, E. Patti, A. Acquaviva, A multi-patient data-driven approach to blood glucose prediction. IEEE Access 7, 69311–69325 (2019)

    Article  Google Scholar 

  25. T. Zhu, X. Yao, K. Li, P. Herrero, P. Georgiou, Blood glucose prediction for type 1 diabetes using generative adversarial networks. In: CEUR Workshop Proceedings, vol. 2675, pp. 90–94 (2020)

  26. F. Tena, O. Garnica, J.L. Davila, J.I. Hidalgo, An lstm-based neural network wearable system for blood glucose prediction in people with diabetes. IEEE J. Biomed. Health Inform. (2023)

  27. W.L. Clarke, D. Cox, L.A. Gonder-Frederick, W. Carter, S.L. Pohl, Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 10(5), 622–628 (1987). https://doi.org/10.2337/diacare.10.5.622

    Article  Google Scholar 

  28. A. Pfützner, D.C. Klonoff, S. Pardo, J.L. Parkes, Technical aspects of the parkes error grid. J. Diabetes Sci. Technol. 7(5), 1275–1281 (2013)

    Article  Google Scholar 

  29. J.I. Hidalgo, J. Alvarado, M. Botella, A. Aramendi, J.M. Velasco, O. Garnica, HUPA-UCM diabetes dataset. Data Brief 55, 110559 (2024). https://doi.org/10.1016/j.dib.2024.110559

Download references

Funding

This work is supported by the Spanish Ministerio de Innovación Ciencia y Universidad - grants PID2021-125549OB-I00 and PDC2022-133429-I00/AEI/10.13039/501100011033 European Union Resilience and Recovery Mechanism, Funded by the European Union - NextGenerationEU.

Author information

Authors and Affiliations

Authors

Contributions

JC wrote the main manuscript. JIH and OG critically reviewed the manuscript and made any necessary changes JC prepared the figures. JIH and OG reviewed the figures. JIH and OG reviewed the research process.

Corresponding authors

Correspondence to Jorge Cano or J. Ignacio Hidalgo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study is in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Data have been specifically collected for this study. They are included in a database created for the project F11/2018, approved by the Hospital Universitario Principe de Asturias’s Clinical Research Ethics Committee. Participants signed an informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cano, J., Hidalgo, J.I. & Garnica, Ó. Hardware real-time individualised blood glucose predictor generator based on grammars and cartesian genetic programming. Genet Program Evolvable Mach 26, 3 (2025). https://doi.org/10.1007/s10710-024-09500-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10710-024-09500-7

Keywords