Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The propagation delay in the timing of a pulsar orbiting a supermassive black hole

  • Editor’s Choice (Research Article)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The observation of a pulsar closely orbiting the galactic center supermassive black hole would open the window for an accurate determination of the black hole parameters and for new tests of General Relativity. An important relativistic effect which has to be taken into account in the timing model is the propagation delay of the pulses in the gravitational field of the black hole. Due to the extreme mass ratio of the pulsar and the supermassive back hole we use the test particle limit to derive an exact analytical formula for the propagation delay in a Schwarzschild spacetime. We then compare this result to the propagation delays derived in the usually employed post-Newtonian approximation, in particular to the Shapiro delay up to the second post-Newtonian order. For edge-on orbits we also consider modifications of the Shapiro delay which take the lensing effects into account. Our results are then used to assess the accuracy of the different orders of the post-Newtonian approximation of the propagation delay. This comparison indicates that for (nearly) edge-on orbits the new exact delay formula should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., Matthews, K., Morris, M.R., Yelda, S., Becklin, E.E., Kremenek, T., Milosavljevic, M., Naiman, J.: Measuring distance and properties of the milky way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008)

    Article  ADS  Google Scholar 

  2. Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the massive black hole in the galactic center. Astrophys. J. 692, 1075–1109 (2009)

    Article  ADS  Google Scholar 

  3. Lu, R.-S., Broderick, A.E., Baron, F., Monnier, J.D., Fish, V.L., Doeleman, S.S., Pankratius, V.: Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope. Astrophys. J. 788, 120 (2014)

    Article  ADS  Google Scholar 

  4. Falcke, H., Melia, F., Agol, E.: Viewing the shadow of the black hole at the galactic center. Astrophys. J. Lett. 528, L13–L16 (2000)

    Article  ADS  Google Scholar 

  5. Liu, K., Wex, N., Kramer, M., Cordes, J.M., Lazio, T.J.W.: Prospects for probing the spacetime of Sgr A* with pulsars. Astrophys. J. 747, 1 (2012)

    Article  ADS  Google Scholar 

  6. Psaltis, D., Wex, N., Kramer, M.: A quantitative test of the no-hair theorem with Sgr A* using stars, pulsars, and the event horizon telescope. Astrophys. J. 818, 121 (2016)

    Article  ADS  Google Scholar 

  7. Broderick, A.E., Johannsen, T., Loeb, A., Psaltis, D.: Testing the no-hair theorem with event horizon telescope observations of sagittarius A*. Astrophys. J. 784, 7 (2014)

    Article  ADS  Google Scholar 

  8. Goddi, C., Falcke, H., Kramer, M., Rezzolla, L., Brinkerink, C., Bronzwaer, T., Davelaar, J.R.J., Deane, R., de Laurentis, M., Desvignes, G., Eatough, R.P., Eisenhauer, F., Fraga-Encinas, R., Fromm, C.M., Gillessen, S., Grenzebach, A., Issaoun, S., Janßen, M., Konoplya, R., Krichbaum, T.P., Laing, R., Liu, K., Lu, R.-S., Mizuno, Y., Moscibrodzka, M., Müller, C., Olivares, H., Pfuhl, O., Porth, O., Roelofs, F., Ros, E., Schuster, K., Tilanus, R., Torne, P., van Bemmel, I., van Langevelde, H.J., Wex, N., Younsi, Z., Zhidenko, A.: BlackHoleCam: fundamental physics of the galactic center. Int. J. Mod. Phys. D 26, 1730001–239 (2017)

    Article  ADS  Google Scholar 

  9. Hees, A., Do, T., Ghez, A.M., Martinez, G.D., Naoz, S., Becklin, E.E., Boehle, A., Chappell, S., Chu, D., Dehghanfar, A., Kosmo, K., Lu, J.R., Matthews, K., Morris, M.R., Sakai, S., Schödel, R., Witzel, G.: Testing general relativity with stellar orbits around the supermassive black hole in our galactic center. Phys. Rev. Lett. 118(21), 211101 (2017)

    Article  ADS  Google Scholar 

  10. Grould, M., Meliani, Z., Vincent, F.H., Grandclément, P., Gourgoulhon, E.: Comparing timelike geodesics around a Kerr black hole and a boson star. Class. Quantum Gravity 34(21), 215007 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Rúnarsson, H.F.: Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115(21), 211102 (2015)

    Article  ADS  Google Scholar 

  12. Cunha, P.V.P., Font, J.A., Herdeiro, C., Radu, E., Sanchis-Gual, N., Zilhão, M.: Lensing and dynamics of ultracompact bosonic stars. Phys. Rev. D 96(10), 104040 (2017)

    Article  ADS  Google Scholar 

  13. Vincent, F.H., Gourgoulhon, E., Herdeiro, C., Radu, E.: Astrophysical imaging of Kerr black holes with scalar hair. Phys. Rev. D 94(8), 084045 (2016)

    Article  ADS  Google Scholar 

  14. Vincent, F.H., Meliani, Z., Grandclément, P., Gourgoulhon, E., Straub, O.: Imaging a boson star at the Galactic center. Class. Quantum Gravity 33(10), 105015 (2016)

    Article  ADS  Google Scholar 

  15. Mizuno, Y., Younsi, Z., Fromm, C.M., Porth, O., De Laurentis, M., Olivares, H., Falcke, H., Kramer, M., Rezzolla, L.: The current ability to test theories of gravity with black hole shadows. Nat. Astron. 2, 585 (2018)

    Article  ADS  Google Scholar 

  16. Pfahl, E., Loeb, A.: Probing the spacetime around sagittarius A* with radio pulsars. Astrophys. J. 615, 253–258 (2004)

    Article  ADS  Google Scholar 

  17. Macquart, J.-P., Kanekar, N., Frail, D.A., Ransom, S.M.: A high-frequency search for pulsars within the central parsec of Sgr A*. Astrophys. J. 715, 939–946 (2010)

    Article  ADS  Google Scholar 

  18. Macquart, J.-P., Kanekar, N.: On detecting millisecond pulsars at the galactic center. Astrophys. J. 805, 172 (2015)

    Article  ADS  Google Scholar 

  19. Rajwade, K.M., Lorimer, D.R., Anderson, L.D.: Detecting pulsars in the galactic centre. MNRAS 471, 730–739 (2017)

    Article  ADS  Google Scholar 

  20. Keane, E., Bhattacharyya, B., Kramer, M., Stappers, B., Keane, E. F., Bhattacharyya, B., Kramer, M., Stappers, B. W., Bates, S. D., Burgay, M., Chatterjee, S., Champion, D. J., Eatough, R. P., Hessels, J. W. T., Janssen, G., Lee, K. J., van Leeuwen, J., Margueron, J., Oertel, M., Possenti, A., Ransom, S., Theureau, G., Torne, P.: Proceedings of Science vol. 215, Advancing Astrophysics with the Square Kilometre Array (AASKA14), id. 40 (2015)

  21. Bower, G. C., Chatterjee, S., Cordes, J., Demorest, P., Deneva, J. S., Dexter, J., Kramer, M., Lazio, J., Ransom, S., Shao, L., Wex, N., Wharton, R.: Galactic center pulsars with the ngVLA. In: Murphy,E. (ed.) Science with a Next Generation Very Large Array, Astronomical Society of the Pacific Conference Series, vol. 517, p. 793 (2018)

  22. Eisenhauer, F., Perrin, G., Brandner, W., Straubmeier, C., Perraut, K., Amorim, A., Schöller, M., Gillessen, S., Kervella, P., Benisty, M., Araujo-Hauck, C., Jocou, L., Lima, J., Jakob, G., Haug, M., Clénet, Y., Henning, T., Eckart, A., Berger, J.-P., Garcia, P., Abuter, R., Kellner, S., Paumard, T., Hippler, S., Fischer, S., Moulin, T., Villate, J., Avila, G., Gräter, A., Lacour, S., Huber, A., Wiest, M., Nolot, A., Carvas, P., Dorn, R., Pfuhl, O., Gendron, E., Kendrew, S., Yazici, S., Anton, S., Jung, Y., Thiel, M., Choquet, É., Klein, R., Teixeira, P., Gitton, P., Moch, D., Vincent, F., Kudryavtseva, N., Ströbele, S., Sturm, S., Fédou, P., Lenzen, R., Jolley, P., Kister, C., Lapeyrère, V., Naranjo, V., Lucuix, C., Hofmann, R., Chapron, F., Neumann, U., Mehrgan, L., Hans, O., Rousset, G., Ramos, J., Suarez, M., Lederer, R., Reess, J.-M., Rohloff, R.-R., Haguenauer, P., Bartko, H., Sevin, A., Wagner, K., Lizon, J.-L., Rabien, S., Collin, C., Finger, G., Davies, R., Rouan, D., Wittkowski, M., Dodds-Eden, K., Ziegler, D., Cassaing, F., Bonnet, H., Casali, M., Genzel, R., Lena, P.: GRAVITY: observing the universe in motion. Messenger 143, 16–24 (2011)

    ADS  Google Scholar 

  23. Collaboration, Gravity: First light for GRAVITY: a new era for optical interferometry. Messenger 170, 10–15 (2017)

    ADS  Google Scholar 

  24. Verbiest, J.P.W., Bailes, M., van Straten, W., Hobbs, G.B., Edwards, R.T., Manchester, R.N., Bhat, N.D.R., Sarkissian, J.M., Jacoby, B.A., Kulkarni, S.R.: Precision timing of PSR J0437–4715: an accurate pulsar distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational constant. Astrophys. J. 679, 675–680 (2008)

    Article  ADS  Google Scholar 

  25. Kramer, M.: Probing gravitation with pulsars. In: Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years, Proceedings of the International Astronomical Union, vol. 8, p. 19 (2012)

  26. Zhang, Fupeng, Saha, Prasenjit: Probing the spinning of the massive black hole in the galactic center via pulsar timing: a full relativistic treatment. Astrophys. J. 849, 33 (2017)

    Article  ADS  Google Scholar 

  27. Wang, Yan, Jenet, Frederick A., Creighton, Teviet, Price, Richard H.: Strong field effects on pulsar arrival times: circular orbits and equatorial beams. Astrophys. J. 697, 237–246 (2009)

    Article  ADS  Google Scholar 

  28. Wang, Y., Creighton, T., Price, R.H., Jenet, F.A.: Strong field effects on pulsar arrival times: general orientations. Astrophys. J. 705, 1252–1259 (2009)

    Article  ADS  Google Scholar 

  29. Edwards, R.T., Hobbs, G.B., Manchester, R.N.: TEMPO2, a new pulsar timing package—II. The timing model and precision estimates. MNRAS 372, 1549–1574 (2006)

    Article  ADS  Google Scholar 

  30. Damour, T., Taylor, J.H.: Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D 45, 1840–1868 (1992)

    Article  ADS  Google Scholar 

  31. Damour, T., Deruelle, N.: General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst. Henri Poincaré Phys. Théor. 44(3), 263–292 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Shapiro, I.I.: Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  33. Blandford, R., Teukolsky, S.A.: Arrival-time analysis for a pulsar in a binary system. Astrophys. J. 205, 580 (1976)

    Article  ADS  Google Scholar 

  34. Brumberg, V. A.: Essential relativistic celestial mechanics. Taylor & Francis, ISBN: 9780750300629

  35. Zschocke, S., Klioner, S. A.: Analytical solution for light propagation in Schwarzschild field having an accuracy of 1 micro-arcsecond (2009). ArXiv e-prints

  36. Schneider, J.: Gravitational beam deviation effects in the timing formula of binary pulsars. Astron. Astrophys. 232, 62 (1990)

    ADS  Google Scholar 

  37. Doroshenko, O.V., Kopeikin, S.M.: Relativistic effect of gravitational deflection of light in binary pulsars. MNRAS 274, 1029–1038 (1995)

    ADS  Google Scholar 

  38. Wex, N., Kopeikin, S.M.: Frame dragging and other precessional effects in black hole pulsar binaries. Astrophys. J. 514, 388–401 (1999)

    Article  ADS  Google Scholar 

  39. Damour, T., Schäfer, G.: Higher-order relativistic periastron advances and binary pulsars. Il Nuovo Cimento B 101, 127 (1988)

    Article  ADS  Google Scholar 

  40. Wex, N.: The second post-Newtonian motion of compact binary-star systems with spin. Class. Quantum Gravity 12, 983 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  41. Königsdörffer, C., Gopakumar, A.: Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: the leading order spin-orbit interaction. Phys. Rev. D 71, 024039 (2005)

    Article  ADS  Google Scholar 

  42. Futamase, T., Itoh, Y.: The post-Newtonian approximation for relativistic compact binaries. Living Rev. Relativ. 10(1), 2 (2007)

    Article  ADS  Google Scholar 

  43. Hartung, J., Steinhoff, J., Schäfer, G.: Next-to-next-to-leading order post-Newtonian linear-in-spin binary Hamiltonians. Ann. Phys. 525, 359 (2013)

    Article  MathSciNet  Google Scholar 

  44. Damour, T., Jaranowski, P., Schäfer, G.: Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems. Phys. Rev. D 89, 064058 (2014)

    Article  ADS  Google Scholar 

  45. Levi, M., Steinhoff, J.: Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order (2016). ArXiv e-prints

  46. Bernard, L., Blanchet, L., Bohé, A., Faye, G., Marsat, S.: Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order. Phys. Rev. D 95(4), 044026 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. Semerák, O.: Approximating light rays in the Schwarzschild field. Astrophys. J. 800, 77 (2015)

    Article  ADS  Google Scholar 

  48. Beloborodov, A.M.: Gravitational bending of light near compact objects. Astrophys. J. Lett. 566, L85–L88 (2002)

    Article  ADS  Google Scholar 

  49. De Falco, V., Falanga, M., Stella, L.: Approximate analytical calculations of photon geodesics in the Schwarzschild metric. A&A 595, A38 (2016)

    Article  ADS  Google Scholar 

  50. Lai, Dong, Rafikov, Roman R.: Effects of gravitational lensing in the double pulsar system J0737–3039. Astrophys. J. 621, L41–L44 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the research training group GRK 1620 ”Models of Gravity”, funded by the German Research Foundation (DFG), for support. E.H. gratefully acknowledges support from the DFG funded collaborative research center SFB 1128 ”Relativistic geodesy with quantum sensors (geo-Q)”. A.D. is thankful to University of Bremen for its hospitality and support where this work was conceptualized. We thank D. Schwarz and J. Verbiest for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Hackmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: solution to the time integral

Appendix A: solution to the time integral

The integrals in Eq. (12) are of the form

$$\begin{aligned} T(r,b) := \int _{r_4}^r \frac{r^2 dr}{b \left( 1-\frac{2}{r}\right) \sqrt{R(r)}} \end{aligned}$$
(A1)

with \(r=r_e\) or \(r=\infty \), and R is defined in Eq. (6). Here we normalised all quantities such that they are dimensionless, i.e. \(r={\tilde{r}}/m\), \(b={\tilde{b}}/m\) where the twiddled quantities are in geometrised units. This integral can be analytically solved in terms of elliptic integrals. The substitution

$$\begin{aligned} x^2&= \frac{(r-r_4)(r_3-r_1)}{(r-r_3)(r_4-r_1)} \end{aligned}$$
(A2)

with the roots \(r_i\) of R chosen as in Eq. (9), casts the integral in the Legendre form

$$\begin{aligned} T(r,b)&= \frac{2}{\sqrt{r_4(r_3-r_1)}} \int _{0}^{x(r)} \frac{f(x) dx}{\sqrt{(1-x^2)(1-k^2x^2)}}\,, \end{aligned}$$
(A3)

where

$$\begin{aligned} k^2&= \frac{r_3(r_4-r_1)}{r_4(r_3-r_1)}\,, \end{aligned}$$
(A4)
$$\begin{aligned} f(x)&= \frac{r_3^3}{r_3-2} + \frac{A_1}{1-c_1x^2} + \frac{A_2}{1-c_2x^2} + \frac{A_3}{(1-c_3x^2)^2} \end{aligned}$$
(A5)

with the constants

$$\begin{aligned} A_1&= 2(r_4-r_3)(r_3+1),\quad&c_1&= \frac{r_4-r_1}{r_3-r_1},\nonumber \\ A_2&= \frac{8(r_3-r_4)}{(r_3-2)(r_4-2)},\quad&c_2&= \frac{(r_4-r_1)(r_3-2)}{(r_3-r_1)(r_4-2)} \\ A_3&= (r_4-r_3)^2,\quad&c_3&= c_1 \nonumber . \end{aligned}$$
(A6)

We note that for \(r=\infty \) Eq. (A2) reduces to

$$\begin{aligned} x_{\infty }^2&:= x(r=\infty )^2 = \frac{r_3-r_1}{r_4-r_1} = \frac{1}{c_1}\,. \end{aligned}$$
(A7)

With the Jacobi elliptic integrals

$$\begin{aligned} F(x,k)&= \int _0^x \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}\,, \end{aligned}$$
(A8)
$$\begin{aligned} E(x,k)&= \int _0^x \sqrt{1-k^2x^2} dx\,, \end{aligned}$$
(A9)
$$\begin{aligned} \Pi (x,c,k)&= \int _0^x \frac{dx}{(1-cx^2)\sqrt{(1-x^2)(1-k^2x^2)}} \,, \end{aligned}$$
(A10)

we find

$$\begin{aligned} T(r,b)&= \frac{2}{\sqrt{r_4(r_3-r_1)}} \left[ \frac{r_3^3}{r_3-2} F(x,k) + A_1 \Pi (x,c_1,k) + A_2 \Pi (x,c_2,k) \right. \nonumber \\&\quad + \frac{A_3}{2(c_3-1)} \left( \frac{x c_3^2\sqrt{(1-x^2)(1-k^2x^2)}}{(1-c_3x^2)(c_3-k^2)}\right. \nonumber \\&\quad \left. \left. + F(x,k)-\frac{c_3}{c_3-k^2} E(x,k) + \frac{c_3^2+3k^2-2c_3(1+k^2)}{c_3-k^2} \Pi (x,c_3,k) \right) \right] \nonumber \\&= \frac{2}{\sqrt{r_4(r_3-r_1)}} \left[ \left( \frac{r_3^3}{r_3-2}+\frac{(r_4-r_3)(r_3-r_1)}{2}\right) F(x,k)\right. \nonumber \\&\quad - \frac{1}{2} r_4(r_3-r_1) E(x,k) + 2 (r_4-r_3) \Pi (x,c_1,k)\nonumber \\&\quad \left. - \frac{8(r_4-r_3)}{(r_4-2)(r_3-2)} \Pi (x,c_2,k) \right] + \frac{b\sqrt{R(r)}}{r-r_3}\,, \end{aligned}$$
(A11)

where x is related to r via (A2). Note that the Jacobi elliptic integrals can be evaluated without using a numeric integration, and can therefore be considered as an exact analytical solution to the integral T.

Note that the last term in (A11) diverges linearly for \(r \rightarrow \infty \). As well, \(\Pi (x,c,k)\) diverges logarithmically for \(x^2=1/c\), which happens in our case for \(x=x_\infty \) and \(c=c_1=c_3\). Therefore, the time for reaching \(r=\infty \) diverges as expected. To isolate the diverging terms we apply an identity,

$$\begin{aligned} \Pi (x,c,k)&= F(x,k) - \Pi \left( x,\frac{k^2}{c},k\right) + \frac{\ln (Z)}{2P} \end{aligned}$$
(A12)

where

$$\begin{aligned} Z&= \frac{\sqrt{(1-x^2)(1-k^2x^2)}+Px}{\sqrt{(1-x^2)(1-k^2x^2)}-Px}\,, \end{aligned}$$
(A13)
$$\begin{aligned} P^2&= \frac{(c-1)(c-k^2)}{c} = \frac{(r_4-r_3)^2}{r_4(r_3-r_1)}\,. \end{aligned}$$
(A14)

for \(c=c_1\). With this Eq. (A11) becomes

$$\begin{aligned} T(r,b)&= \frac{2}{\sqrt{r_4(r_3-r_1)}} \left[ \left( \frac{r_3^3}{r_3-2}+\frac{1}{2}(r_4-r_3)(r_3-r_1+4)\right) F(x,k)\right. \nonumber \\&\quad - \frac{1}{2} r_4(r_3-r_1) E(x,k) - 2 (r_4-r_3) \Pi \left( x,\frac{k^2}{c_1},k\right) \nonumber \\&\quad \left. - \frac{8(r_4-r_3)}{(r_4-2)(r_3-2)} \Pi (x,c_2,k)\right] + \frac{b\sqrt{R(r)}}{r-r_3} \nonumber \\&\quad + 2\ln \left( \frac{\sqrt{r(r-r_1)}+\sqrt{(r-r_4)(r-r_3)}}{\sqrt{r(r-r_1)}-\sqrt{(r-r_4)(r-r_3)}} \right) \end{aligned}$$
(A15)

where the last two terms diverge for \(x=x_{\infty }\). We find the Taylor expansions of these terms as

$$\begin{aligned} \frac{b\sqrt{R(r)}}{r-r_3}&= r+r_3+{\mathcal {O}}\left( \frac{1}{r}\right) \,, \end{aligned}$$
(A16)
$$\begin{aligned} 2\ln (Z)&= 2\ln \left( \frac{2}{r_4+r_3}\right) + 2\ln r + {\mathcal {O}}\left( \frac{1}{r}\right) \,. \end{aligned}$$
(A17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackmann, E., Dhani, A. The propagation delay in the timing of a pulsar orbiting a supermassive black hole. Gen Relativ Gravit 51, 37 (2019). https://doi.org/10.1007/s10714-019-2517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2517-2

Keywords