Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Influence of weak electromagnetic fields on charged particle ISCOs

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Astrophysical black holes are often embedded into electromagnetic fields, that can usually be treated as test fields not influencing the spacetime geometry. Here we analyse the innermost stable circular orbit (ISCO) of charged particles moving around a Schwarzschild black hole in the presence of a radial electric test field and an asymptotically uniform magnetic test field. We discuss the structure of the in general four ISCO solutions for different magnitudes of the electric and the magnetic field’s strength. In particular, we find that the nonexistence of stable circular orbits of particles with equal sign of charge as the black hole for sufficiently strong electric fields can be canceled by a sufficiently strong magnetic field. In this situation, we find that ISCOs made of static particles will emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We could add the magnetic monopole charge as a fourth parameter.

  2. We use geometrised units \(\tilde{Q}= \frac{Q_\mathrm{SI}\sqrt{G}}{\sqrt{4\pi \epsilon _0}c^2}\) and \(\tilde{M}=GM/c^2\), where \(Q_\mathrm{SI}\) is the charge of the black hole, M is the mass of the black hole, G is the gravitational constant, c is the speed of light, and \(\epsilon _0\) is the electric constant, all in SI units.

  3. In geometrised units \(q=\frac{q_\mathrm{SI}}{\sqrt{4\pi \epsilon _0 G}m}\), where m is the mass of the particle that is assumed to be much smaller than the mass of the black hole.

References

  1. Chruściel, P.T., Costa, J.L., Heusler, M.: Living Rev. Relativ. 15(1), 7 (2012). https://doi.org/10.12942/lrr-2012-7

    Article  ADS  Google Scholar 

  2. Eardley, D.M., Press, W.H.: Annu. Rev. Astron. Astrophys. 13(1), 381 (1975). https://doi.org/10.1146/annurev.aa.13.090175.002121

    Article  ADS  Google Scholar 

  3. Henry, R.C.: Astrophys. J. 535(1), 350 (2000). https://doi.org/10.1086/308819

    Article  ADS  Google Scholar 

  4. Grunau, S., Kagramanova, V.: Phys. Rev. D 83(4), 044009 (2011). https://doi.org/10.1103/PhysRevD.83.044009

    Article  ADS  Google Scholar 

  5. Schroven, K., Hackmann, E., Lämmerzahl, C.: Phys. Rev. D 96(6), 063015 (2017). https://doi.org/10.1103/PhysRevD.96.063015

    Article  ADS  MathSciNet  Google Scholar 

  6. Nathanail, A., Most, E.R., Rezzolla, L.: Mon. Not. R. Astron. Soc. Lett. 469(1), L31 (2017). https://doi.org/10.1093/mnrasl/slx035

    Article  ADS  Google Scholar 

  7. Zhang, B.: Astrophys. J. Lett. 827, L31 (2016). https://doi.org/10.3847/2041-8205/827/2/L31

    Article  ADS  Google Scholar 

  8. Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., Crawford, F.: Science 318, 777 (2007). https://doi.org/10.1126/science.1147532

    Article  ADS  Google Scholar 

  9. Thornton, D., Stappers, B., Bailes, M., Barsdell, B., Bates, S., Bhat, N.D.R., Burgay, M., Burke-Spolaor, S., Champion, D.J., Coster, P., D’Amico, N., Jameson, A., Johnston, S., Keith, M., Kramer, M., Levin, L., Milia, S., Ng, C., Possenti, A., van Straten, W.: Science 341, 53 (2013). https://doi.org/10.1126/science.1236789

    Article  ADS  Google Scholar 

  10. Punsly, B., Bini, D.: Mon. Not. R. Astron. Soc. 459, L41 (2016). https://doi.org/10.1093/mnrasl/slw039

    Article  ADS  Google Scholar 

  11. Liu, T., Romero, G.E., Liu, M.L., Li, A.: Astrophys. J. 826, 82 (2016). https://doi.org/10.3847/0004-637X/826/1/82

    Article  ADS  Google Scholar 

  12. Levin, J., D’Orazio, D.J., Garcia-Saenz, S.: Phys. Rev. D 98, 123002 (2018). https://doi.org/10.1103/PhysRevD.98.123002

    Article  ADS  MathSciNet  Google Scholar 

  13. Zajaček, M., Tursunov, A., Eckart, A., Britzen, S.: Mon. Not. R. Astron. Soc. 480(4), 4408 (2018). https://doi.org/10.1093/mnras/sty2182

    Article  ADS  Google Scholar 

  14. Blandford, R.D., Znajek, R.L.: Mon. Not. R. Astron. Soc. 179, 433 (1977). https://doi.org/10.1093/mnras/179.3.433

    Article  ADS  Google Scholar 

  15. Wald, R.M.: Phys. Rev. D 10, 1680 (1974). https://doi.org/10.1103/PhysRevD.10.1680

    Article  ADS  Google Scholar 

  16. King, A.R., Lasota, J.P., Kundt, W.: Phys. Rev. D 12, 3037 (1975). https://doi.org/10.1103/PhysRevD.12.3037

    Article  ADS  Google Scholar 

  17. Ruffini, R., Wilson, J.R.: Phys. Rev. D 12, 2959 (1975). https://doi.org/10.1103/PhysRevD.12.2959

    Article  ADS  Google Scholar 

  18. Gibbons, G.W.: Mon. Not. R. Astron. Soc. 177, 37P (1976). https://doi.org/10.1093/mnras/177.1.37P

    Article  ADS  Google Scholar 

  19. Aliev, A.N., Gal’tsov, D.V.: Sov. Phys. Uspekhi 32, 75 (1989). https://doi.org/10.1070/PU1989v032n01ABEH002677

    Article  ADS  Google Scholar 

  20. Lee, H.K., Lee, C.H., van Putten, M.H.P.M.: Mon. Not. R. Astron. Soc. 324, 781 (2001). https://doi.org/10.1046/j.1365-8711.2001.04401.x

    Article  ADS  Google Scholar 

  21. Piotrovich, M.Y., Silant’ev, N.A., Gnedin, Y.N., Natsvlishvili, T.M.: arXiv e-prints arXiv:1002.4948 (2010)

  22. Frolov, V.P., Shoom, A.A.: Phys. Rev. D 82(8), 084034 (2010). https://doi.org/10.1103/PhysRevD.82.084034

    Article  ADS  Google Scholar 

  23. Kološ, M., Stuchlík, Z., Tursunov, A.: Class. Quantum Gravity 32(16), 165009 (2015)

    Article  ADS  Google Scholar 

  24. Stuchlík, Z., Kološ, M., Tursunov, A.: Proceedings 17(1). https://doi.org/10.3390/proceedings2019017013

    Article  Google Scholar 

  25. Shakura, N.I., Sunyaev, R.A.: Astron. Astrophys. 24, 337 (1973)

    ADS  Google Scholar 

  26. Abramowicz, M.A., Fragile, P.C.: Living Rev. Relativ. 16, 1 (2013). https://doi.org/10.12942/lrr-2013-1

    Article  ADS  Google Scholar 

  27. Abramowicz, M., Jaroszynski, M., Sikora, M.: Astron. Astrophys. 63, 221 (1978)

    ADS  Google Scholar 

  28. Event Horizon Telescope Collaboration: Astrophys. J. Lett. 875(1), L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7

    Article  ADS  Google Scholar 

  29. Amaro-Seoane, P., Aoudia, S., Babak, S., Binétruy, P., Berti, E., Bohé, A., Caprini, C., Colpi, M., Cornish, N.J., Danzmann, K., Dufaux, J.F., Gair, J., Jennrich, O., Jetzer, P., Klein, A., Lang, R.N., Lobo, A., Littenberg, T., McWilliams, S.T., Nelemans, G., Petiteau, A., Porter, E.K., Schutz, B.F., Sesana, A., Stebbins, R., Sumner, T., Vallisneri, M., Vitale, S., Volonteri, M., Ward, H.: Class. Quantum Gravity 29(12), 124016 (2012). https://doi.org/10.1088/0264-9381/29/12/124016

    Article  ADS  Google Scholar 

  30. Pugliese, D., Quevedo, H., Ruffini, R.: Eur. Phys. J. C 77(4), 206 (2017). https://doi.org/10.1140/epjc/s10052-017-4769-x

    Article  ADS  Google Scholar 

  31. Tursunov, A., Stuchlík, Z., Kološ, M.: Phys. Rev. D 93(8), 084012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Pugliese, D., Quevedo, H., Ruffini, R.: Phys. Rev. D 83(10), 104052 (2011). https://doi.org/10.1103/PhysRevD.83.104052

    Article  ADS  Google Scholar 

  33. Balek, V., Bicak, J., Stuchlik, Z.: Bull. Astron. Inst. Czechoslov. 40, 133 (1989)

    ADS  Google Scholar 

  34. Gladush, V.D., Galadgyi, M.V.: Kinemat. Phys. Celest. Bodies 25(2), 79 (2009). https://doi.org/10.3103/S0884591309020032

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Kris Schroven for fruitful discussions. We gratefully acknowledge support from the Research Training Group RTG 1620 “Models of Gravity” funded by the Deutsche Forschungsgemeinschaft (DFG). E.H. is thankful for support from the DFG funded Cluster of Excellence EXC 2123 “Quantum Frontiers”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan P. Hackstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A ISCO equation for the radial component r

A ISCO equation for the radial component r

Inserting the equation of motion (2.6) into the first condition of (3.1) and expressing the particle’s angular momentum L as well as energy E by Eqs. (3.2) and (3.3) results in the following equation for the radial component r, depending only on the magnetic field strength \(\mathcal {B}\) and the electric charge \(\mathcal {Q}\)

$$\begin{aligned} \begin{aligned} 0=&\frac{1}{4 r^2(r-6)^2\mathcal {Q}^2}(384 \mathcal {B}^2r^3\mathcal {Q}^2+408 \mathcal {B}^4r^8-352\mathcal {B}^4r^7+96\mathcal {B}^4r^6-48\mathcal {Q}^4\\&-\,544\mathcal {B}^2r^4\mathcal {Q}^2+16\mathcal {B}^4r^{10}-144\mathcal {B}^4r^9+32\mathcal {Q}^4r-24\mathcal {B}^2r^6\mathcal {Q}^2+192\mathcal {B}^2r^5\mathcal {Q}^2\\&-\,48C\mathcal {B}r^2\mathcal {Q}^2+48rC\mathcal {B}\mathcal {Q}^2+8C\mathcal {B}r^3\mathcal {Q}^2+72\mathcal {B}^3r^5C-48r^4C\mathcal {B}^3+24r^2C\mathcal {B}\\&-\,16\mathcal {B}^3r^6C-4r^3C\mathcal {B}+36r^2-12r^3+r^4+240\mathcal {B}^2r^5-144\mathcal {B}^2r^4-168r^2\mathcal {Q}^2\\&+\,144r\mathcal {Q}^2-84\mathcal {B}^2r^6+48r^3\mathcal {Q}^2+8\mathcal {B}^2r^7-4r^4\mathcal {Q}^2), \end{aligned} \end{aligned}$$
(A.1)

with \(C=\sqrt{-(r-6)r(3\mathcal {B}^2 r^4-2\mathcal {B}^2 r^3-4\mathcal {Q}^2)}\) as before. The electromagnetic field’s influence on the ISCO’s radial component r determined by \(\mathcal {B}\) and \(\mathcal {Q}\) can be calculated by solving Eq. (A.1) for r. Equations (3.2), (3.3) and (A.1) thus describe the charged particle along its corresponding ISCO, depending exclusively on the electromagnetic field’s properties \(\mathcal {B}\) and \(\mathcal {Q}\).

Considering the limiting case \(\mathcal {B}=0\) from section 3.2 in turn yields the following three expressions

$$\begin{aligned}&\displaystyle 0=\frac{1}{4 r^2(r-6)^2\mathcal {Q}^2}(-48\mathcal {Q}^4+32\mathcal {Q}^4r+36r^2-12r^3+r^4-168r^2\mathcal {Q}^2+144r\mathcal {Q}^2\nonumber \\&\displaystyle +48r^3\mathcal {Q}^2-4r^4\mathcal {Q}^2), \end{aligned}$$
(A.2)
$$\begin{aligned}&\displaystyle L^2=\frac{4r\mathcal {Q}^2}{r-6}, \end{aligned}$$
(A.3)
$$\begin{aligned}&\displaystyle E=\frac{(1-2\mathcal {Q}^2)r^2+(-6+12\mathcal {Q}^2)r-12\mathcal {Q}^2}{2r(r-6)\mathcal {Q}}. \end{aligned}$$
(A.4)

In this case, the angular momentum L is of quadratic order in Eq. (2.6). The solutions \(L_{\upalpha ,\upbeta }\) given by Eq. (3.2) consequently coincide, resulting in one expression \(L^2\). The two solutions for the energy \(E_{\upalpha ,\upbeta }\) from Eq. (3.3) coincide as well, since the distinguishing term with opposite signs \(\mp 2C\mathcal {B}\) in Eq. (3.3) vanishes for \(\mathcal {B}=0\), resulting in one expression for the energy E. The results presented in Fig. 1 can be obtained by solving Eq. (A.2) for r, whereas Eqs. (A.3) and (A.4) yield the corresponding square of the particle’s angular momentum and the particle’s energy, respectively.

In the limiting case \(\mathcal {Q}=0\), Eq. (A.1) diverges because of a zero in the denominator of the right-hand side. It stems from having inserted the particle’s energy E given by Eq. (3.3), which diverges for \(\mathcal {Q}=0\) as well. Equation (3.3) was calculated by solving \(\frac{\hbox {d}^{2}\mathcal {U}}{\hbox {d}r^{2}}=0\) for E. When examining the special case \(Q=0\), \(\mathcal {U}(r)\) defined by Eq. (2.6) depends solely on the particle’s energy square \(E^2\). It drops out when differentiating \(\mathcal {U}(r)\) with respect to r. Solving \(\frac{\hbox {d}^{2}\mathcal {U}}{\hbox {d}r^{2}}=0\) for E is thus not possible, making Eqs. (A.1) and (3.3) invalid in this limit.

Instead, \(\mathcal {U}(r)=0\) can be solved for \(E^2\) in the case \(\mathcal {Q}=0\) and the result inserted into \(\frac{\hbox {d}^{2}\mathcal {U}}{\hbox {d}r^{2}}=0\) to yield an analytical expression, analogous to Eq. (A.2), from which the radial component r can be calculated along an interval of \(\mathcal {B}\). Since the limit of a vanishing electric charge was not the main subject of this paper and has already been treated in [22], the resulting expression will be omitted here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackstein, J.P., Hackmann, E. Influence of weak electromagnetic fields on charged particle ISCOs. Gen Relativ Gravit 52, 22 (2020). https://doi.org/10.1007/s10714-020-02675-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02675-1

Keywords