Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-Criteria Job Scheduling in Grid Using an Accelerated Genetic Algorithm

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The continuous growth of computation power requirement has provoked computational Grids, in order to resolve large scale problems. Job scheduling is a very important mechanism and a better scheduling scheme can greatly improve the efficiency of Grid computing. A lot of algorithms have been proposed to address the job scheduling problem. Unfortunately, most of them largely ignore the security risks involved in executing jobs in such an unreliable environment as Grid. This is known as security problem and it is a main hurdle to make the job scheduling secure, reliable and fault-tolerant. In this paper, we present a Genetic Algorithm with multi-criteria approach, in terms of job completion time and security risks. Although Genetic Algorithms are suitable for large search space problems such as job scheduling, they are too slow to be executed online. Hence, we changed the implementation of a traditional genetic algorithm, proposing the Accelerated Genetic Algorithm. We also present the Accelerated Genetic Algorithm with Overhead which concerns the extra overhead caused by the application of Accelerated Genetic Algorithm. Accelerated Genetic Algorithm and Accelerated Genetic Algorithm with Overhead are compared with three well-known heuristic algorithms. Simulation results indicate a substantial performance advantage of both Accelerated Genetic Algorithm and Accelerated Genetic Algorithm with Overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15, 200–222 (2001)

    Article  Google Scholar 

  2. Brooke, J.M., Parkin, M.S.: Enabling scientific collaboration on the Grid. Future Gener. Comput. Syst. 26, 521–530 (2010)

    Article  Google Scholar 

  3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufman Publishers, San Mateo, CA (1998)

    Google Scholar 

  4. Chetty, M., Buyya, R.: Weaving computational Grids: How analogous are they with electrical Grids?. J. Comput. Sci. Eng. (CiSE) 4, 61–71 (2001)

    Article  Google Scholar 

  5. Law, A., Kelton, D.: Simulation Modeling and Analysis. McGraw-Hill, New York (1991)

    Google Scholar 

  6. El-Rewini, H., Lewis, T., Ali, H.: Task Scheduling in Parallel and Distributed Systems. Prentice Hall, Englewood Cliffs, NJ (1994)

    Google Scholar 

  7. Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in general purpose distributed computing system. IEEE Trans. Softw. Eng. 14, 141–154 (1988)

    Article  Google Scholar 

  8. Wang, S.-D., Hsu, I.-T., Huang, Z.-Y.: Dynamic scheduling methods for computational grid environments. Int. Conf. Parallel Distribut. Syst. 1, 22–28 (2008)

    Google Scholar 

  9. Weng, C., Lu, X.: Heuristic scheduling for bag-of-tasks applications in combination with qos in the computational grid. Future Gener. Comput. Syst. 21, 271–280 (2005)

    Article  Google Scholar 

  10. Abawajy, J.: An efficient adaptive scheduling policy for high performance computing. Future Gener. Comput. Syst. 25, 364–370 (2009)

    Article  Google Scholar 

  11. Tang, M., Lee, B.-S., Tang, X., Yeo, C.-K.: The impact of data replication on job scheduling performance in the data grid. Future Gener. Comput. Syst. 22, 840–852 (2006)

    Article  Google Scholar 

  12. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic mapping of a class of independent tasks onto heterogeneous computing systems. J. Parallel Distrib. Comput. 59, 107–121 (1999)

    Article  Google Scholar 

  13. Braun, T.D., Hensgen, D., Freund, R., Siegel, H.J., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson, J., Theys, M., Yao, B.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61, 810–837 (2001)

    Article  Google Scholar 

  14. Braun, T.D., Siegal, H.J., Beck, N., Boloni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Bin Yao, Hensgen, D., Freund, R.F.: A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems. In: 8th Proceedings of Heterogeneous Comput. Workshop, pp. 15–29 (1999)

  15. Chauhan, S.S., Joshi, R.C.: A weighted mean time Min-Min Max-Min selective scheduling strategy for independent tasks on Grid. In: IEEE 2nd Int. Advance Computing Conference (IACC), pp. 4–9 (2010)

  16. Gkoutioudi, K., Karatza, H.D.: Task cluster scheduling in a grid system. Simulation Modelling Practice and Theory 18, 1242–1252 (2010)

    Article  Google Scholar 

  17. Ungureanu, V., Melamed, B., Katehakis, M., Bradford, P.G.: Deferred assignment scheduling in cluster-based servers. Cluster Comput. 9, 57–65 (2006)

    Article  Google Scholar 

  18. Zikos, S., Karatza, H.: Performance and energy aware cluster-level scheduling of compute intensive jobs with unknown service times. Simulation Modelling Practice and Theory 19, 239–250 (2011)

    Article  Google Scholar 

  19. Zikos, S., Karatza, H.: The impact of service demand variability on resource allocation strategies in a grid system. ACM Trans. Model. Comput. Simul. (TOMACS) 20, 1–29 (2010)

    Article  Google Scholar 

  20. Zikos, S., Karatza, H.: A Clairvoyant site allocation of jobs with highly variable service demands in a computational grid. In: Proc. of the 9th Int. Workshop on Perform. Modeling, Evaluation, and Optimization of Ubiquitous Computing and Networked Syst. (PMEO-UCNS’10), in conjunction with IPDPS 2010, (sponsored by IEEE Computer Society and ACM SIGARCH) (2010)

  21. Moschakis, I.A., Karatza, H.D.: Evaluation of gang scheduling performance and cost in a cloud computing system. J. Supercomput. (2010). doi:10.1007/s11227-010-0481-4

    Google Scholar 

  22. Wu, C.-C., Sun, R.-Y.: An integrated security-aware job scheduling strategy for large-scale computational grids. Future Gener. Comput. Syst. 26 (2010) doi:10.1016/j.future.2009.08.004

    Google Scholar 

  23. Foster, I., Kesselman, C., Tuecke, S.: A security architecture for computational grids. In: 5th ACM Conf. on Computer and Communication Security (1997)

  24. Czerwinski, S.E. , Zhao, B.Y. , Hodes, T.D. , Joseph, A.D. , Katz, R.H. : An architecture for a secure service discovery service. In: 5th Annual Int. Conf. on Mob. Computing and Networks (Mobicom99) (1999)

  25. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1992)

    Google Scholar 

  26. Zomaya, A.Y., Lee, R.C., Olariu, S.: An introduction to genetic-based scheduling in parallel-processor systems. In: Zomaya, A.Y., Ercal, F., Olariu, S. (eds.) Solutions to Parallel and Distributed Computing Problems - Lessons from Biological Science, pp. 111–133. Wiley, New York (2001)

    Google Scholar 

  27. Song, S.,Kwok, Y.K., Hwang, K.: Trusted job scheduling in open computational grids: security-driven heuristics and a fast genetic algorithm. In: Proc. IEEE Intl Parallel and Distributed Processing Symp. (IPDPS ’05). 1 (2005)

  28. Song, S., Hwang, K., Kwok, Y.K.: Risk-resilient heuristics and genetic algorithms for security-assured grid scheduling. IEEE Trans. Comput. 55, 703–719 (2006)

    Article  Google Scholar 

  29. Xhafa, F., Carretero, J., Abraham, A.: Genetic algorithm based schedulers for grid computing systems. Int. J. Innovative Computing, Inf. Control 3, 1053–1071 (2007)

    Google Scholar 

  30. Correa, R., Ferreira, A., Rebreyend, P.: Scheduling multiprocessor tasks with genetic algorithms. IEEE Trans. Parallel Distrib. Syst. 10, 825–837 (1999)

    Article  Google Scholar 

  31. Zomaya, A.Y., The, Y.-H.: Observations on using genetic algorithms for dynamic load-balancing. IEEE Trans. Parallel Distrib. Syst. 12, 899–911 (2001)

    Article  Google Scholar 

  32. Hou, E., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst. 5, 113–120 (1994)

    Article  Google Scholar 

  33. Greene, W.A.: Dynamic load-balancing via a genetic algorithm. In: 13th IEEE Intl. Conference on Tools with Artificial Intelligenc, pp. 121–129 (2001)

  34. Grefenstette, J.J.: Incorporating problem specific knowledge in genetic algorithms. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 42–60. Morgan Kaufmann, Los Altos, CA (1987)

    Google Scholar 

  35. Klusacek, D., Rudova, H., Baraglia, R., Pasquali, M., Capannini, G.: Comparison of multi-criteria scheduling techniques. In: CoreGRID Integr. Workshop 2008. Integrated Research in Grid Computing. Heraklion-Crete (2008)

  36. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: A multicriteria approach to two-level hierarchy scheduling in grids. J. Sched. 11(5):371–379 (2008)

    Google Scholar 

  37. Hoogeveen, H.: Multicriteria scheduling. Eur. J. Oper. Res. 167:592–623 (2005)

  38. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Grid multicriteria job scheduling with resource reservation and prediction mechanisms. Perspect. Mod. Proj. Sched.: Intl. Ser. Oper. Res. Manag. Sci. 92, 345–373 (2006)

    Google Scholar 

  39. Klein, Y., Langholz, G.: Multi-criteria scheduling optimization using fuzzy logic. IEEE Int. Conf. Syst. Man Cybern. 1, 445–450 (1998)

    Google Scholar 

  40. Fanti, M.P., Maione, B., Naso, D., Turchiano, B.: Genetic multi-criteria approach to flexible line scheduling. Int. J. Approx. Reason. 19, 5–21 (1998)

    Article  MATH  Google Scholar 

  41. Saleh, A.I., Sarhan, A.M., Hamed, A.M.: A New grid scheduler with failure recovery and rescheduling mechanisms: discussion and analysis. Journal of Grid Computing doi:10.1007/s10723-011-9200

  42. Ramírez-Alcaraz, J., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U., Quezada-Pina, A., González-García, J., Hirales-Carbajal, A.: Job allocation strategies with user run time estimates for online scheduling in hierarchical grids. Journal of Grid Computing 9, 95–116 (2011)

    Article  Google Scholar 

  43. Yu, J., Buyya, R.: A taxonomy of workflow management systems for Grid computing. Journal of Grid Computing 3, 171–200 (2005)

    Article  Google Scholar 

  44. Rood, B., Lewis, M.: Grid resource availability prediction-based scheduling and task replication. Journal of Grid Computing 7, 479–500 (2009)

    Article  Google Scholar 

  45. de Lucchese, O.F., Yero, E.J.H., Sambatti, F.S., Henriques, M.A.A.: An adaptive scheduler for Grids. Journal of Grid Computing 4, 1–17 (2006)

    Article  Google Scholar 

  46. Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-Crummey, J., Liu, B., Johnsson, L.: Scheduling strategies for mapping application workflows onto grid. In: 14th IEEE Intl. Symp. on High Perform. Distributed Comput, pp. 125–134 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriaki Z. Gkoutioudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gkoutioudi, K.Z., Karatza, H.D. Multi-Criteria Job Scheduling in Grid Using an Accelerated Genetic Algorithm. J Grid Computing 10, 311–323 (2012). https://doi.org/10.1007/s10723-012-9210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-012-9210-y

Keywords