Abstract
The aim of this paper is to introduce a new ant colony optimization procedure for the Arc Routing Problem with Intermediate Facilities under Capacity and Length Restrictions (CLARPIF), a variant of the Capacitated Arc Routing Problem (CARP) and of the Capacitated Arc Routing Problem with Intermediate Facilities (CARPIF). Computational results show that this algorithm is capable of providing substantial improvements over other known heuristics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- |V|:
-
Number of vertices;
- |E|=|R|:
-
Number of edges (all required);
- L :
-
Maximum route lenght;
- LB :
-
Lower bound provided by De Rosa et al. (2001) algorithm;
- \(\overline{z_{1}}\) :
-
Solution value provided by the constructive heuristic proposed by Ghiani et al. (2004a, 2004b);
- SEC 1 :
-
Computing time in seconds for the constructive heuristic proposed by Ghiani et al. (2004a, 2004b);
- \(\overline{z_{2}}\) :
-
Solution value provided by TS 2;
- SEC 2 :
-
Computing time in seconds for TS 2;
- \(\overline{z_{3}}\) :
-
Solution value provided by TS 3;
- SEC 3 :
-
Computing time in seconds for TS 3;
- \(\overline{z_{4}}\) :
-
Best solution value provided by ANTCLARPIF;
- SEC 4 :
-
Computing time in seconds for ANTCLARPIF to compute \(\overline{z_{4}}\) ;
- N.runs:
-
Number of runs of ANTCLARPIF;
- \(\overline{z_{4m}}\) :
-
Average solution value provided by ANTCLARPIF;
- SD 4m :
-
Standard deviation of the solution values provided by ANTCLARPIF, computed with respect to the average solution value \(\overline{z_{4m}}\) ;
- \(\overline{z_{4}}/\overline{z_{1}}\) :
-
\(\overline{z_{4}}\) over \(\overline{z_{1}}\) ratio;
- \(\overline{z_{4}}/\overline{z_{2}}\) :
-
\(\overline{z_{4}}\) over \(\overline{z_{2}}\) ratio;
- \(\overline{z_{4}}/\overline{z_{3}}\) :
-
\(\overline{z_{4}}\) over \(\overline{z_{3}}\) ratio;
- SEC4/SEC1:
-
SEC4 over SEC1 ratio;
- SEC4/SEC2:
-
SEC4 over SEC2 ratio;
- SEC4/SEC3:
-
SEC4 over SEC3 ratio;
- DEVIATION :
-
\((\min \lbrace\overline{z_{1}},\overline{z_{2}},\overline{z_{3}},\overline{z_{4}}\rbrace/\mathit{LB}-1)\) ;
- DEVIATION m :
-
\((\overline{z_{4}}/\mathit{LB}-1)\) .
References
Belenguer, J.M., Benavent, E., Cognata, F.: A metaheuristic for the capacitated arc routing problem. Unpublished manuscript (1997)
Benavent, E., Campos, V., Corberan, A., Mota, E.: The capacitated arc routing problem: Lower bounds. Networks 22, 669–690 (1992)
Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local search heuristic for the capacitated arc routing problem. Eur. J. Oper. Res. 147, 629–643 (2003)
Birattari, M.: The problem of tuning metaheuristics as seen from a machine learning perspective. Ph.D. Thesis, Université Libre de Bruxelles (2004)
Birattari, M., Stützle, T., Paquete, T., Varrentrapp, L.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., Cant-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Janoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, pp. 11–18 (2002)
De Rosa, B., Ghiani, G., Improta, G., Musmanno, R.: The arc routing and scheduling problem with transshipment. Transp. Sci. 36, 301–313 (2001)
DeArmon, J.: A comparison of heuristics for the capacitated chinese postman problem. Master’s Thesis, University of Maryland (1981)
Doerner, K.F., Gronalt, M., Hartl, R.F., Reimann, M., Strauss, C., Stummer, M.: Savings ants for the vehicle routing problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) Applications of Evolutionary Computing. Lecture Notes in Computer Science, vol. 2279, pp. 11–20. Springer, Berlin (2002)
Doerner, K.F., Hartl, R.F., Maniezzo, V., Reimann, M.: Applying ant colony optimization to the capacitated arc routing problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F. (eds.) Ant Colony Optimization and Swarm Intelligence: 4th International Workshop ANTS 2004. Lecture Notes in Computer Science, vol. 3172, pp. 420–421. Springer, Berlin (2004)
Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis, Dipartimento di Elettronica ed Informazione, Politecnico di Milano, Italy (1992)
Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill, London (1999)
Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the travelling salesman problem. Trans. Evol. Comput. 1, 53–66 (1997)
Dorigo, M., Stützle, T.: The ant Colony Optimization Metaheuristic: Algorithms, Applications and Advances. International Series in Operations Research & Management Science, vol. 57, pp. 251–285. Kluwer Academic, Boston (2002)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26, 29–41 (1996)
Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5, 137–172 (1999)
Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A Multiple ant Colony System for Vehicle Routing Problems with Time Windows, pp. 63–76. McGraw-Hill, London (1999)
Ghiani, G., Improta, G., Laporte, G.: The capacitated arc routing problem with intermediate facilities. Networks 37, 134–143 (2001)
Ghiani, G., Guerriero, F., Improta, G., Musmanno, R.: Solving a complex public waste collection problem in Southern Italy. Int. Trans. Oper. Res. 12, 135–144 (2004a)
Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Tabu search heuristics for the arc routing problem with intermediate facilities under capacity and lenght restrictions. J. Math. Model. Algorithms 3, 209–223 (2004b)
Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11, 305–315 (1981)
Hertz, A., Laporte, G., Mittaz, M.: A tabu search heuristic for the capacitated arc routing problem. Oper. Res. 48, 129–135 (2000)
Hertz, A., Laporte, G., Mittaz, M.: A variable neighbourhood descent algorithm for the undirected capacitated arc routing problem. Transp. Sci. 35, 425–434 (2001)
Lacomme, P., Prins, C., Ramdane-Cherif, W.: A genetic algorithm for the capacitated routing problem and its extensions. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hartl, E., Raidl, G.R., Tijink, H. (eds.) Application of Evolutionary Computing, EvoWorkshop 2001, Como, Italy. Lecture Notes in Computer Science, vol. 2037, pp. 159–185. Springer, Berlin (2001)
Lacomme, P., Prins, C., Ramdane-Cherif, W.: Competitive memetic algorithms for arc routing problems. Ann. Oper. Res. 131, 159–185 (2004a)
Lacomme, P., Prins, C., Tanguy, A.: First competitive ant colony scheme for the carp. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F. (eds.) Ant Colony Optimization and Swarm Intelligence: 4th International Workshop ANTS 2004. Lecture Notes in Computer Science, vol. 3172, pp. 426–427. Springer, Berlin (2004b)
Lemieux, P.F., Campagna, L.: The snow plowing problem solved by a graph theory algorithm. Civ. Eng. Syst. 1, 337–341 (1984)
Lenstra, J.K., Rinnooy Kan, A.H.G.: On general routing problems. Networks 6, 273–280 (1976)
Wirasinghe, S.C., Waters, N.M.: An approximate procedure for determining the number, capacities and locations of solid waste transfer-stations in an urban region. Eur. J. Oper. Res. 12, 105–111 (1983)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghiani, G., Laganà, D., Laporte, G. et al. Ant colony optimization for the arc routing problem with intermediate facilities under capacity and length restrictions. J Heuristics 16, 211–233 (2010). https://doi.org/10.1007/s10732-008-9097-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-008-9097-8