Abstract
The b-chromatic number of a graph \(G\) is a maximum integer \(\varphi (G)\) for which there exists a proper \(\varphi (G)\)-coloring with the additional property that each color class contains a vertex that is adjacent to one of the vertices within each color class. In contrast to many theoretical results discovered over the last decade and a half there are no computer running experiments on \(\varphi (G)\) in the literature. This work presents a hybrid evolutionary algorithm for graph b-coloring. Its performance has been tested on some instances of regular graphs where their b-chromatic number is theoretically known in advance, as well as by comparing with a brute force algorithm solving the regular graphs up to 12 vertices. In addition, the algorithm has been tested on some larger graphs taken from a DIMACS challenge benchmark that also proved to be challenging for the algorithms searching for the classical chromatic number \(\chi (G)\).

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151, 379–388 (2003)
Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)
Balakrishnan, R., Raj, S.F.: Bounds for the b-chromatic number of \(G-v\). Discret. Appl. Math. 161, 1173–1179 (2013)
Balakrishnan, R., Raj, S.F., Kavaskar, T.: Coloring the Mycielskian. Proc. Int. Conf. ICDM 1401, 53–57 (2008)
Barth, D., Cohen, J., Faik, T.: On the b-continuity property of graphs. Discret. Appl. Math. 155, 1761–1768 (2007)
Blöchliger, I., Zufferey, N.: A reactive Tabu search using partial solutions for the graph coloring problem. In: Kral, D., Sgall, J. (eds.), Coloring Graphs from Lists with Bounded Size of their Union: Result from Dagstuhl Seminar, vol. 03391 (2003)
Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)
Blum, C., Puchinger, J., Raidl, G.A., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)
Brelaz, D.: New methods to color vertices of a graph. Commun. ACM 22(4), 251–256 (1979)
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)
Brown, R., Roli, A.: Chromatic scheduling and the chromatic number problem. Manag. Sci. 19(4), 456–463 (1972)
Cabello, S., Jakovac, M.: On the b-chromatic number of regular graphs. Discret. Appl. Math. 159, 1303–1310 (2011)
Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. Eur. J. Oper. Res. 32, 260–266 (1987)
Chaouche, F., Berrachedi, A.: Some bounds for the b-chromatic number of a generalized Hamming graphs. Far East J. Appl. Math. 26, 375–391 (2007)
Chiarandini, M., Dumitrescu, I., Stützle, T.: Stochastic local search algorithms for the graph colouring problem, In: Gonzalez, T.F. (Ed.), Handbook of Approximation Algorithms and Metaheuristics, pp. 63.1–63.17. Chapman Hall, Boca Raton (2007)
Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125 (2002)
Corteel, S., Valencia-Pabon, M., Vera, J.-C.: On approximating the b-chromatic number. Discret. Appl. Math. 146, 106–110 (2005)
Culberson, J.: Graph Coloring Page (2014). http://web.cs.ualberta.ca/joe/Coloring/. Accessed 20 Feb 2014
Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35 (2013)
Darwin, C.: The Origin of Species. John Murray, London (1859)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature—PPSN V, 5th International Conference, pp. 745–754 (1998)
Effantin, B.: The b-chromatic number of power graphs of complete caterpillars. J. Discret. Math. Sci. Cryptogr. 8, 483–502 (2005)
Effantin, B., Kheddouci, H.: The b-chromatic number of some power graphs. Discret. Math. Theor. Comput. Sci. 6, 45–54 (2003)
Effantin, B., Kheddouci, H.: Exact values for the b-chromatic number of a power complete \(k\)-ary tree. J. Discret. Math. Sci. Cryptogr. 8, 117–129 (2005)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
Elghazel, H., Deslandres, V., Hacid, M.-S. Dussauchoy, A., Kheddoucci, H.: A new clustering approach for symbolic data and its validation: application to the healthcare data. In: F. Esposito et all (Eds.) Proceedings of the International Conference on Foundations of Intelligent Systems—ISMIS 2006, LNAI, vol. 4203, pp. 473–482. Springer, Berlin (2006)
Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–464 (1996)
Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)
Gaceb, D., Eglin, V., Lebourgeois, F., Emptoz, H.: Improvement of postal mail sorting system. Int. J. Document Anal. Recogn. 11, 67–80 (2008)
Gaceb, D., Eglin, V., Lebourgeois, F., Emptoz, H.: Robust approach of address block localization in business mail by graph coloring. Int. Arab. J. Inform. Tech. 6, 221–229 (2009)
Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)
Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33, 2547–2562 (2006)
Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the \(k\)-coloring problem. Discret. Appl. Math. 156(2), 267–279 (2008)
Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)
Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1996)
Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)
Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156(13), 2551–2560 (2008)
Hoang, C.T., Kouider, M.: On the b-dominating coloring of graphs. Discret. Appl. Math. 152, 176–186 (2005)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA (1992)
Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Computer Science Press, Rockville (1978)
Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discret. Appl. Math. 91, 127–141 (1999)
Jakovac, M., Klavžar, S.: The b-chromatic number of cubic graphs. Graphs Comb. 26, 107–118 (2010)
Jakovac, M., Peterin, I.: On the b-chromatic number of some products. Studia Sci. Math. Hung. 49, 156–169 (2012)
Jakovac, M., Peterin, I.: The b-chromatic index of a graph. Bull. Malays. Math. Sci. Soc. (2013) doi:10.1007/s40840-014-0088-7
Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation, part II graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)
Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, vol. 26. American Mathematical Society, Providence (1996)
Kouider, M., Mahéo, M.: Some bounds for the b-chromatic number of a graph. Discret. Math. 256, 267–277 (2002)
Kouider, M., Mahéo, M.: The b-chromatic number of the Cartesian product of two graphs. Studia Sci. Math. Hung. 44, 49–55 (2007)
Kouider, M., Zaker, M.: Bounds for the b-chromatic number of some families of graphs. Discret. Math. 306, 617–623 (2006)
Koza, J.R.: Genetic Programming 2: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)
Kratochvíl, J., Tuza, Z., Voigt, M.: On the b-chromatic number of graphs. Lect. Notes Comput. Sci. 2573, 310–320 (2002)
Kubale, M.: Graph Colorings. American Mathematical Society, Providence (2004)
Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. bureau Stand. 84(6), 489–506 (1979)
Lima, C.V.G.C., Martins, N.A., Sampaio, L., Santos, M.C., Silva, A.: b-Chromatic index of graphs. Electron. Notes Discret. Math. 44, 9–14 (2013)
Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 1, 241–250 (2010)
Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20(2), 302–316 (2008)
Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17, 1–34, (2009)
Meringer, M.: Regular Graphs (2014). http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html, Accessed 20 Feb 2014
Sewell, E.C.: An improved algorithm for exact graph coloring, In D.S. Johnson and M.A. Trick, editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, DIMACS series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 359–376. American Mathematical Society, Providence (1996)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global. Optim. 11(4), 341–359 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fister, I., Peterin, I., Mernik, M. et al. Hybrid evolutionary algorithm for the b-chromatic number. J Heuristics 21, 501–521 (2015). https://doi.org/10.1007/s10732-015-9288-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-015-9288-z