Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Epidemiologic and experimental evidence suggests that adverse stimuli during critical periods in utero permanently alters organ structure and function and may have persistent consequences for the long-term health of the offspring. Fetal hypoxia, maternal malnutrition, or ventricular overloading are among the major adverse conditions that can compromise cardiovascular development in early life. With the heart as a central organ in fetal adaptive mechanisms, a deeper understanding of the fetal cardiovascular physiology and of the echocardiographic tools to assess both normal and stressed pregnancies would give precious information on fetal well-being and hopefully may help in early identification of special risk groups for cardiovascular diseases later in life. Assessment of cardiac function in the fetus represents an additional challenge when comparing to children and adults, requiring advanced training and a critical approach to properly acquire and interpret functional parameters. This review summarizes the basic fetal cardiovascular physiology and the main differences from the mature postnatal circulation, provides an overview of the particularities of echocardiographic evaluation in the fetus, and finally proposes an integrated view of in utero programming of cardiovascular diseases later in life, highlighting priorities for future clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AV:

Atrioventricular

ECG:

Electrocardiogram

FGR:

Fetal growth restriction

LV:

Left ventricle

MPI:

Myocardial performance index

RV:

Right ventricle

TDI:

Tissue Doppler imaging

TTTS:

Twin-to-twin transfusion syndrome

2D-ST:

2D-speckle tracking

References

  1. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298(6673):564–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moorman AFMBN, Anderson RH (2009) Embryology of the heart. In: Anderson RHBE, Penny DJ, Redington AN, Rigby ML, Wernovsky G (eds) Paediatric cardiology, Third edn. Churchill Livingstone, Philadelphia, pp 37–55

    Google Scholar 

  3. Romero T, Covell J, Friedman WF (1972) A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am J Phys 222(5):1285–1290

    CAS  Google Scholar 

  4. Friedman WF, Pool PE, Jacobowitz D, Seagren SC, Braunwald E (1968) Sympathetic innervation of the developing rabbit heart. Biochemical and histochemical comparisons of fetal, neonatal, and adult myocardium. Circ Res 23(1):25–32

    Article  CAS  PubMed  Google Scholar 

  5. Friedman WF (1972) The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis 15(1):87–111

    Article  CAS  PubMed  Google Scholar 

  6. Jonker SS, Louey S (2016) Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J Endocrinol 228(1):R1–18. doi:10.1530/JOE-15-0309

    Article  CAS  PubMed  Google Scholar 

  7. Acharya G, Gui Y, Cnota W, Huhta J, Wloch A (2016) Human embryonic cardiovascular function. Acta Obstet Gynecol Scand 95(6):621–628. doi:10.1111/aogs.12860

    Article  PubMed  Google Scholar 

  8. van Splunder P, Stijnen T, Wladimiroff JW (1996) Fetal atrioventricular flow-velocity waveforms and their relation to arterial and venous flow-velocity waveforms at 8 to 20 weeks of gestation. Circulation 94(6):1372–1378

    Article  PubMed  Google Scholar 

  9. Harada K, Rice MJ, Shiota T, Ishii M, McDonald RW, Reller MD, Sahn DJ (1997) Gestational age- and growth-related alterations in fetal right and left ventricular diastolic filling patterns. Am J Cardiol 79(2):173–177

    Article  CAS  PubMed  Google Scholar 

  10. Tulzer G, Khowsathit P, Gudmundsson S, Wood DC, Tian ZY, Schmitt K, Huhta JC (1994) Diastolic function of the fetal heart during second and third trimester: a prospective longitudinal Doppler-echocardiographic study. Eur J Pediatr 153(3):151–154

    Article  CAS  PubMed  Google Scholar 

  11. Areias JC, Matias A, Montenegro N (1998) Venous return and right ventricular diastolic function in ARED flow fetuses. J Perinat Med 26(3):157–167

    CAS  PubMed  Google Scholar 

  12. Artman M (1992) Sarcolemmal Na(+)-Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Am J Phys 263(5 Pt 2):H1506–H1513

    CAS  Google Scholar 

  13. Mahony L, Jones LR (1986) Developmental changes in cardiac sarcoplasmic reticulum in sheep. J Biol Chem 261(32):15257–15265

    CAS  PubMed  Google Scholar 

  14. Fisher DJ, Heymann MA, Rudolph AM (1981) Myocardial consumption of oxygen and carbohydrates in newborn sheep. Pediatr Res 15(5):843–846

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28(8):1737–1746. doi:10.1006/jmcc.1996.0163

    Article  CAS  PubMed  Google Scholar 

  16. Clubb FJ Jr, Bishop SP (1984) Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab Investig 50(5):571–577

    PubMed  Google Scholar 

  17. Barbera A, Giraud GD, Reller MD, Maylie J, Morton MJ, Thornburg KL (2000) Right ventricular systolic pressure load alters myocyte maturation in fetal sheep. Am J Phys Regul Integr Comp Phys 279(4):R1157–R1164

    CAS  Google Scholar 

  18. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27(2):191–201. doi:10.1016/j.ejcts.2004.11.026

    Article  PubMed  Google Scholar 

  19. Anderson RH, Ho SY, Redmann K, Sanchez-Quintana D, Lunkenheimer PP (2005) The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur J Cardiothorac Surg 28(4):517–525. doi:10.1016/j.ejcts.2005.06.043

    Article  PubMed  Google Scholar 

  20. Sedmera D (2005) Form follows function: developmental and physiological view on ventricular myocardial architecture. Eur J Cardiothorac Surg 28(4):526–528. doi:10.1016/j.ejcts.2005.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tobita K, Garrison JB, Liu LJ, Tinney JP, Keller BB (2005) Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec A Discov Mol Cell Evol Biol 283(1):193–201. doi:10.1002/ar.a.20133

    Article  PubMed  Google Scholar 

  22. Tobita K, Keller BB (2000) Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am J Physiol Heart Circ Physiol 279(3):H959–H969

    CAS  PubMed  Google Scholar 

  23. Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB (1999) Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254(2):238–252

    Article  CAS  PubMed  Google Scholar 

  24. Saiki Y, Konig A, Waddell J, Rebeyka IM (1997) Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal guinea pig hearts. Surgery 122(2):412–419

    Article  CAS  PubMed  Google Scholar 

  25. Kiserud T, Acharya G (2004) The fetal circulation. Prenat Diagn 24(13):1049–1059. doi:10.1002/pd.1062

    Article  PubMed  Google Scholar 

  26. Thornburg KL, Morton MJ (1986) Filling and arterial pressures as determinants of left ventricular stroke volume in fetal lambs. Am J Phys 251(5 Pt 2):H961–H968

    CAS  Google Scholar 

  27. Rudolph AM (2009) The fetal circulation. In: AM R (ed) Congenital diseases of the heart: clinical-physiological considerations, Third edn. Wiley-Blackwell, San Francisco, pp 1–24

    Chapter  Google Scholar 

  28. Thornburg KL, Morton MJ (1983) Filling and arterial pressures as determinants of RV stroke volume in the sheep fetus. Am J Phys 244(5):H656–H663

    CAS  Google Scholar 

  29. Hashima JN, Rogers V, Langley SM, Ashraf M, Sahn DJ, Ohtonen P, Davis LE, Hohimer AR, Rasanen J (2015) Fetal ventricular interactions and wall mechanics during ductus arteriosus occlusion in a sheep model. Ultrasound Med Biol 41(4):1020–1028. doi:10.1016/j.ultrasmedbio.2014.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tulzer G, Gudmundsson S, Rotondo KM, Wood DC, Yoon GY, Huhta JC (1991) Acute fetal ductal occlusion in lambs. Am J Obstet Gynecol 165(3):775–778

    Article  CAS  PubMed  Google Scholar 

  31. Makikallio K, Vuolteenaho O, Jouppila P, Rasanen J (2002) Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation 105(17):2058–2063

    Article  PubMed  Google Scholar 

  32. Skilton MR, Evans N, Griffiths KA, Harmer JA, Celermajer DS (2005) Aortic wall thickness in newborns with intrauterine growth restriction. Lancet 365(9469):1484–1486. doi:10.1016/S0140-6736(05)66419-7

    Article  PubMed  Google Scholar 

  33. Veille JC, Hanson R, Sivakoff M, Hoen H, Ben-Ami M (1993) Fetal cardiac size in normal, intrauterine growth retarded, and diabetic pregnancies. Am J Perinatol 10(4):275–279. doi:10.1055/s-2007-994739

    Article  CAS  PubMed  Google Scholar 

  34. Nakanishi T, Jarmakani JM (1984) Developmental changes in myocardial mechanical function and subcellular organelles. Am J Phys 246(4 Pt 2):H615–H625

    CAS  Google Scholar 

  35. Racca AW, Klaiman JM, Pioner JM, Cheng Y, Beck AE, Moussavi-Harami F, Bamshad MJ, Regnier M (2016) Contractile properties of developing human fetal cardiac muscle. J Physiol 594(2):437–452. doi:10.1113/JP271290

    Article  CAS  PubMed  Google Scholar 

  36. Dalton K, Dawes G, Patrick J (1983) The autonomic nervous system and fetal heart rate variability. Am J Obstet Gynecol 146(4):456–462

    Article  CAS  PubMed  Google Scholar 

  37. Wisser J, Dirschedl P (1994) Embryonic heart rate in dated human embryos. Early Hum Dev 37(2):107–115

    Article  CAS  PubMed  Google Scholar 

  38. Rempen A (1990) Diagnosis of viability in early pregnancy with vaginal sonography. J Ultrasound Med 9(12):711–716

    Article  CAS  PubMed  Google Scholar 

  39. Giussani D, Riquelme R, Moraga F, McGarrigle H, Gaete C, Sanhueza E, Hanson M, Llanos A (1996) Chemoreflex and endocrine components of cardiovascular responses to acute hypoxemia in the llama fetus. Am J Phys 271(1):R73–R83

    CAS  Google Scholar 

  40. Giussani D, Spencer J, Moore P, Bennet L, Hanson M (1993) Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol 461:431–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanson M (1988) The importance of baro- and chemoreflexes in the control of the fetal cardiovascular system. J Dev Physiol 10(6):491–511

    CAS  PubMed  Google Scholar 

  42. Achiron R, Tadmor O, Mashiach S (1991) Heart rate as a predictor of first-trimester spontaneous abortion after ultrasound-proven viability. Obstet Gynecol 78(3):330–334

    CAS  PubMed  Google Scholar 

  43. Laboda L, Estroff J, Benacerraf B (1989) First trimester bradycardia. A sign of impending fetal loss. J Ultrasound Med 8(10):561–563

    Article  CAS  PubMed  Google Scholar 

  44. Adriaanse BM, van Vugt JM, Haak MC (2016) Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview. J Perinatol 36(9):685–693. doi:10.1038/jp.2016.23

    Article  CAS  PubMed  Google Scholar 

  45. Gardiner H (2014) Foetal cardiac function: assessing new technologies. Cardiol Young 24(Suppl 2):26–35

    Article  PubMed  Google Scholar 

  46. DeVore GR (2005) Assessing fetal cardiac ventricular function. Semin Fetal Neonatal Med 10(6):515–541. doi:10.1016/j.siny.2005.08.009

    Article  PubMed  Google Scholar 

  47. Huhta JC (2004) Guidelines for the evaluation of heart failure in the fetus with or without hydrops. Pediatr Cardiol 25(3):274–286. doi:10.1007/s00246-003-0591-3

    Article  CAS  PubMed  Google Scholar 

  48. Allan LD, Joseph MC, Boyd EG, Campbell S, Tynan M (1982) M-mode echocardiography in the developing human fetus. Br Heart J 47(6):573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Figueras F, Puerto B, Martinez JM, Cararach V, Vanrell JA (2003) Cardiac function monitoring of fetuses with growth restriction. Eur J Obstet Gynecol Reprod Biol 110(2):159–163

    Article  PubMed  Google Scholar 

  50. Mielke G, Benda N (2001) Cardiac output and central distribution of blood flow in the human fetus. Circulation 103(12):1662–1668

    Article  CAS  PubMed  Google Scholar 

  51. Crispi F, Hernandez-Andrade E, Pelsers MM, Plasencia W, Benavides-Serralde JA, Eixarch E, Le Noble F, Ahmed A, Glatz JF, Nicolaides KH, Gratacos E (2008) Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 199(3):254 e251–254 e258. doi:10.1016/j.ajog.2008.06.056

    Article  CAS  Google Scholar 

  52. Kiserud T, Ebbing C, Kessler J, Rasmussen S (2006) Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound Obstet Gynecol 28(2):126–136. doi:10.1002/uog.2832

    Article  CAS  PubMed  Google Scholar 

  53. Comas M, Crispi F, Cruz-Martinez R, Martinez JM, Figueras F, Gratacos E (2010) Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol 203(1):45 e41–45 e47. doi:10.1016/j.ajog.2010.02.044

    Article  Google Scholar 

  54. Crispi F, Gratacos E (2012) Fetal cardiac function: technical considerations and potential research and clinical applications. Fetal Diagn Ther 32(1–2):47–64. doi:10.1159/000338003

    Article  PubMed  Google Scholar 

  55. Gardiner HM, Pasquini L, Wolfenden J, Barlow A, Li W, Kulinskaya E, Henein M (2006) Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol 113(1):39–47. doi:10.1016/j.ijcard.2005.10.029

    Article  PubMed  Google Scholar 

  56. Shah AM, Solomon SD (2012) Myocardial deformation imaging: current status and future directions. Circulation 125(2):e244–e248. doi:10.1161/CIRCULATIONAHA.111.086348

    Article  PubMed  Google Scholar 

  57. Yu CM, Sanderson JE, Marwick TH, Oh JK (2007) Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol 49(19):1903–1914. doi:10.1016/j.jacc.2007.01.078

    Article  PubMed  Google Scholar 

  58. Price DJ, Wallbridge DR, Stewart MJ (2000) Tissue Doppler imaging: current and potential clinical applications. Heart 84(Suppl 2):II11–II18

    PubMed  PubMed Central  Google Scholar 

  59. Harada K, Tsuda A, Orino T, Tanaka T, Takada G (1999) Tissue Doppler imaging in the normal fetus. Int J Cardiol 71(3):227–234

    Article  CAS  PubMed  Google Scholar 

  60. Comas M, Crispi F (2012) Assessment of fetal cardiac function using tissue Doppler techniques. Fetal Diagn Ther 32(1–2):30–38. doi:10.1159/000335028

    Article  PubMed  Google Scholar 

  61. Comas M, Crispi F, Gomez O, Puerto B, Figueras F, Gratacos E (2011) Gestational age- and estimated fetal weight-adjusted reference ranges for myocardial tissue Doppler indices at 24-41 weeks’ gestation. Ultrasound Obstet Gynecol 37(1):57–64. doi:10.1002/uog.8870

    Article  CAS  PubMed  Google Scholar 

  62. Chan LY, Fok WY, Wong JT, Yu CM, Leung TN, Lau TK (2005) Reference charts of gestation-specific tissue Doppler imaging indices of systolic and diastolic functions in the normal fetal heart. Am Heart J 150(4):750–755. doi:10.1016/j.ahj.2004.12.028

    Article  PubMed  Google Scholar 

  63. Crispi F, Sepulveda-Swatson E, Cruz-Lemini M, Rojas-Benavente J, Garcia-Posada R, Dominguez JM, Sitges M, Bijnens B, Gratacos E (2012) Feasibility and reproducibility of a standard protocol for 2D speckle tracking and tissue Doppler-based strain and strain rate analysis of the fetal heart. Fetal Diagn Ther 32(1–2):96–108. doi:10.1159/000337329

    Article  PubMed  Google Scholar 

  64. Perles Z, Nir A, Gavri S, Rein AJ (2007) Assessment of fetal myocardial performance using myocardial deformation analysis. Am J Cardiol 99(7):993–996. doi:10.1016/j.amjcard.2006.10.066

    Article  PubMed  Google Scholar 

  65. Germanakis I, Gardiner H (2012) Assessment of fetal myocardial deformation using speckle tracking techniques. Fetal Diagn Ther 32(1–2):39–46. doi:10.1159/000330378

    Article  PubMed  Google Scholar 

  66. Cameli M, Mondillo S, Solari M, Righini FM, Andrei V, Contaldi C, De Marco E, Di Mauro M, Esposito R, Gallina S, Montisci R, Rossi A, Galderisi M, Nistri S, Agricola E, Mele D (2016) Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Fail Rev 21(1):77–94. doi:10.1007/s10741-015-9521-8

    Article  PubMed  Google Scholar 

  67. Kapusta L, Mainzer G, Weiner Z, Deutsch L, Khoury A, Haddad S, Lorber A (2012) Second trimester ultrasound: reference values for two-dimensional speckle tracking-derived longitudinal strain, strain rate and time to peak deformation of the fetal heart. J Am Soc Echocardiogr 25(12):1333–1341. doi:10.1016/j.echo.2012.09.011

    Article  PubMed  Google Scholar 

  68. Germanakis I, Matsui H, Gardiner HM (2012) Myocardial strain abnormalities in fetal congenital heart disease assessed by speckle tracking echocardiography. Fetal Diagn Ther 32(1–2):123–130. doi:10.1159/000334413

    Article  PubMed  Google Scholar 

  69. Kapusta L, Mainzer G, Weiner Z, Deutsch L, Khoury A, Haddad S, Lorber A (2013) Changes in fetal left and right ventricular strain mechanics during normal pregnancy. J Am Soc Echocardiogr 26(10):1193–1200. doi:10.1016/j.echo.2013.06.007

    Article  PubMed  Google Scholar 

  70. Miranda JO, Hunter L, Tibby S, Sharland G, Miller O, Simpson J (2016) Myocardial deformation in fetuses with coarctation of the aorta: a case-control study. Ultrasound Obstet Gynecol. doi:10.1002/uog.15939

  71. Balli S, Pac FA, Ece I, Oflaz MB, Kibar AE, Kandemir O (2014) Assessment of cardiac functions in fetuses of gestational diabetic mothers. Pediatr Cardiol 35(1):30–37. doi:10.1007/s00246-013-0734-0

    Article  PubMed  Google Scholar 

  72. Verburg BO, Jaddoe VW, Wladimiroff JW, Hofman A, Witteman JC, Steegers EA (2008) Fetal hemodynamic adaptive changes related to intrauterine growth: the Generation R Study. Circulation 117(5):649–659. doi:10.1161/CIRCULATIONAHA.107.709717

    Article  PubMed  Google Scholar 

  73. Bahtiyar MO, Copel JA (2008) Cardiac changes in the intrauterine growth-restricted fetus. Semin Perinatol 32(3):190–193. doi:10.1053/j.semperi.2008.02.010

    Article  PubMed  Google Scholar 

  74. Tsutsumi T, Ishii M, Eto G, Hota M, Kato H (1999) Serial evaluation for myocardial performance in fetuses and neonates using a new Doppler index. Pediatr Int 41(6):722–727

    Article  CAS  PubMed  Google Scholar 

  75. Duzenli MA, Ozdemir K, Aygul N, Soylu A, Aygul MU, Gok H (2009) Comparison of myocardial performance index obtained either by conventional echocardiography or tissue Doppler echocardiography in healthy subjects and patients with heart failure. Heart Vessel 24(1):8–15. doi:10.1007/s00380-008-1069-2

    Article  Google Scholar 

  76. Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ, Tajik AJ, Seward JB (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. J Cardiol 26(6):357–366

    CAS  PubMed  Google Scholar 

  77. Friedman D, Buyon J, Kim M, Glickstein JS (2003) Fetal cardiac function assessed by Doppler myocardial performance index (Tei index). Ultrasound Obstet Gynecol 21(1):33–36. doi:10.1002/uog.11

    Article  CAS  PubMed  Google Scholar 

  78. Hernandez-Andrade E, Lopez-Tenorio J, Figueroa-Diesel H, Sanin-Blair J, Carreras E, Cabero L, Gratacos E (2005) A modified myocardial performance (Tei) index based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound Obstet Gynecol 26(3):227–232. doi:10.1002/uog.1959

    Article  CAS  PubMed  Google Scholar 

  79. Van Mieghem T, Gucciardo L, Lewi P, Lewi L, Van Schoubroeck D, Devlieger R, De Catte L, Verhaeghe J, Deprest J (2009) Validation of the fetal myocardial performance index in the second and third trimesters of gestation. Ultrasound Obstet Gynecol 33(1):58–63. doi:10.1002/uog.6238

    Article  PubMed  Google Scholar 

  80. Meriki N, Izurieta A, Welsh AW (2012) Fetal left modified myocardial performance index: technical refinements in obtaining pulsed-Doppler waveforms. Ultrasound Obstet Gynecol 39(4):421–429. doi:10.1002/uog.9090

    Article  CAS  PubMed  Google Scholar 

  81. Mori Y, Rice MJ, McDonald RW, Reller MD, Wanitkun S, Harada K, Sahn DJ (2001) Evaluation of systolic and diastolic ventricular performance of the right ventricle in fetuses with ductal constriction using the Doppler Tei index. Am J Cardiol 88(10):1173–1178

    Article  CAS  PubMed  Google Scholar 

  82. Montenegro N, Matias A, Areias J, Barros H (1997) Ductus venosus revisited: a Doppler blood flow evaluation in the first trimester of pregnancy. Ultrasound Med Biol 23(2):171–176

    Article  CAS  PubMed  Google Scholar 

  83. Maiz N, Nicolaides K (2010) Ductus venosus in the first trimester: contribution to screening of chromosomal, cardiac defects and monochorionic twin complications. Fetal Diagn Ther 28(2):65–71

    Article  PubMed  Google Scholar 

  84. Baschat AA, Harman CR (2006) Venous Doppler in the assessment of fetal cardiovascular status. Curr Opin Obstet Gynecol 18(2):156–163. doi:10.1097/01.gco.0000192988.07471.f9

    Article  PubMed  Google Scholar 

  85. Matias A, Gomes C, Flack N, Montenegro N, Nicolaides K (1998) Screening for chromosomal abnormalities at 10-14 weeks: the role of ductus venosus blood flow. Ultrasound Obstet Gynecol 12(6):380–384

    Article  CAS  PubMed  Google Scholar 

  86. Matias A, Huggon I, Areias J, Montenegro N, Nicolaides K (1999) Cardiac defects in chromosomally normal fetuses with abnormal ductus venosus blood flow at 10-14 weeks. Ultrasound Obstet Gynecol 14(5):307–310

    Article  CAS  PubMed  Google Scholar 

  87. Figueras F, Gratacos E (2014) Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther 36(2):86–98. doi:10.1159/000357592

    Article  PubMed  Google Scholar 

  88. Zhao L, Wu Y, Chen S, Ren Y, Chen P, Niu J, Li C, Sun K (2016) Feasibility study on prenatal cardiac screening using four-dimensional ultrasound with spatiotemporal image correlation: a multicenter study. PLoS One 11(6):e0157477. doi:10.1371/journal.pone.0157477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Donofrio M, Moon-Grady A, Hornberger L, Copel J, Sklansky M, Abuhamad A, Cuneo B, Huhta J, Jonas R, Krishnan A, Lacey S, Lee W, Michelfelder ES, Rempel G, Silverman N, Spray T, Strasburger J, Tworetzky W, Rychik J, on behalf of the American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology CoC (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129(21):2183–2242

    Article  PubMed  Google Scholar 

  90. Gynecology ISoUiOa, Carvalho J, Allan L, Chaoui R, Copel J, DeVore G, Hecher K, Lee W, Munoz H, Paladini D, Tutschek B, Yagel S (2013) ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 41(3):348–359

    Article  Google Scholar 

  91. Huhta J (2016) First-trimester screening for congenital heart disease. Curr Opin Cardiol 31(1):72

    Article  PubMed  Google Scholar 

  92. Jicinska H, Vlasin P, Jicinsky M, Grochova I, Tomek V, Volaufova J, Skovranek J, Marek J (2017) Does first-trimester screening modify the natural history of congenital heart disease? Analysis of outcome of regional cardiac screening at 2 different time periods. Circulation 135(11):1045–1055

    Article  PubMed  Google Scholar 

  93. Cruz-Lemini M, Crispi F, Valenzuela-Alcaraz B, Figueras F, Sitges M, Gomez O, Bijnens B, Gratacos E (2013) Value of annular M-mode displacement vs tissue Doppler velocities to assess cardiac function in intrauterine growth restriction. Ultrasound Obstet Gynecol 42(2):175–181. doi:10.1002/uog.12374

    Article  CAS  PubMed  Google Scholar 

  94. Crispi F, Bijnens B, Sepulveda-Swatson E, Cruz-Lemini M, Rojas-Benavente J, Gonzalez-Tendero A, Garcia-Posada R, Rodriguez-Lopez M, Demicheva E, Sitges M, Gratacos E (2014) Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging 7(5):781–787. doi:10.1161/CIRCIMAGING.113.001490

    Article  PubMed  Google Scholar 

  95. Skilton MR, Viikari JS, Juonala M, Laitinen T, Lehtimaki T, Taittonen L, Kahonen M, Celermajer DS, Raitakari OT (2011) Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults: the Cardiovascular Risk in Young Finns Study. Arterioscler Thromb Vasc Biol 31(12):2975–2981. doi:10.1161/ATVBAHA.111.234757

    Article  CAS  PubMed  Google Scholar 

  96. Goodfellow J, Bellamy MF, Gorman ST, Brownlee M, Ramsey MW, Lewis MJ, Davies DP, Henderson AH (1998) Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res 40(3):600–606

    Article  CAS  PubMed  Google Scholar 

  97. Arnott C, Skilton MR, Ruohonen S, Juonala M, Viikari JS, Kahonen M, Lehtimaki T, Laitinen T, Celermajer DS, Raitakari OT (2015) Subtle increases in heart size persist into adulthood in growth restricted babies: the Cardiovascular Risk in Young Finns Study. Open Heart 2(1):e000265. doi:10.1136/openhrt-2015-000265

    Article  PubMed  PubMed Central  Google Scholar 

  98. Crispi F, Bijnens B, Figueras F, Bartrons J, Eixarch E, Le Noble F, Ahmed A, Gratacos E (2010) Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 121(22):2427–2436. doi:10.1161/CIRCULATIONAHA.110.937995

    Article  PubMed  Google Scholar 

  99. Martin H, Hu J, Gennser G, Norman M (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation 102(22):2739–2744

    Article  CAS  PubMed  Google Scholar 

  100. Zieske AW, Malcom GT, Strong JP (2002) Natural history and risk factors of atherosclerosis in children and youth: the PDAY study. Pediatr Pathol Mol Med 21(2):213–237. doi:10.1080/15227950252852104

    Article  PubMed  Google Scholar 

  101. Berenson GS (2002) Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am J Cardiol 90(10C):3L–7L

    Article  PubMed  Google Scholar 

  102. Barker DJ (1994) Outcome of low birthweight. Horm Res 42(4–5):223–230

    Article  CAS  PubMed  Google Scholar 

  103. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341(8850):938–941

    Article  CAS  PubMed  Google Scholar 

  104. Ingul CB, Loras L, Tegnander E, Eik-Nes SH, Brantberg A (2016) Maternal obesity affects fetal myocardial function as early as in the first trimester. Ultrasound Obstet Gynecol 47(4):433–442. doi:10.1002/uog.14841

    Article  CAS  PubMed  Google Scholar 

  105. Ece I, Uner A, Balli S, Kibar AE, Oflaz MB, Kurdoglu M (2014) The effects of pre-pregnancy obesity on fetal cardiac functions. Pediatr Cardiol 35(5):838–843. doi:10.1007/s00246-014-0863-0

    Article  PubMed  Google Scholar 

  106. Roberts VH, Frias AE, Grove KL (2015) Impact of maternal obesity on fetal programming of cardiovascular disease. Physiology (Bethesda) 30(3):224–231. doi:10.1152/physiol.00021.2014

    CAS  Google Scholar 

  107. Reynolds RM, Allan KM, Raja EA, Bhattacharya S, McNeill G, Hannaford PC, Sarwar N, Lee AJ, Bhattacharya S, Norman JE (2013) Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ 347:f4539. doi:10.1136/bmj.f4539

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gandhi JA, Zhang XY, Maidman JE (1995) Fetal cardiac hypertrophy and cardiac function in diabetic pregnancies. Am J Obstet Gynecol 173(4):1132–1136

    Article  CAS  PubMed  Google Scholar 

  109. Kulkarni A, Li L, Craft M, Nanda M, Lorenzo JM, Danford D, Kutty S (2016) Fetal myocardial deformation in maternal diabetes mellitus and obesity. Ultrasound Obstet Gynecol. doi:10.1002/uog.15971

  110. Petitt DJ, Bennett PH, Knowler WC, Baird HR, Aleck KA (1985) Gestational diabetes mellitus and impaired glucose tolerance during pregnancy. Long-term effects on obesity and glucose tolerance in the offspring. Diabetes 34(Suppl 2):119–122

    Article  PubMed  Google Scholar 

  111. Simeoni U, Barker DJ (2009) Offspring of diabetic pregnancy: long-term outcomes. Semin Fetal Neonatal Med 14(2):119–124. doi:10.1016/j.siny.2009.01.002

    Article  PubMed  Google Scholar 

  112. Rychik J, Tian Z, Bebbington M, Xu F, McCann M, Mann S, Wilson RD, Johnson MP (2007) The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease. Am J Obstet Gynecol 197(4):392 e391–392 e398. doi:10.1016/j.ajog.2007.06.055

    Article  Google Scholar 

  113. Rychik J, Zeng S, Bebbington M, Szwast A, Quartermain M, Natarajan S, Johnson M, Tian Z (2012) Speckle tracking-derived myocardial tissue deformation imaging in twin-twin transfusion syndrome: differences in strain and strain rate between donor and recipient twins. Fetal Diagn Ther 32(1–2):131–137. doi:10.1159/000335403

    Article  PubMed  Google Scholar 

  114. Van Mieghem T, Giusca S, DeKoninck P, Gucciardo L, Done E, Hindryckx A, D’Hooge J, Deprest J (2010) Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome. J Am Soc Echocardiogr 23(3):301–308. doi:10.1016/j.echo.2009.12.024

    Article  PubMed  Google Scholar 

  115. Herberg U, Bolay J, Graeve P, Hecher K, Bartmann P, Breuer J (2014) Intertwin cardiac status at 10-year follow-up after intrauterine laser coagulation therapy of severe twin-twin transfusion syndrome: comparison of donor, recipient and normal values. Arch Dis Child Fetal Neonatal Ed 99(5):F380–F385. doi:10.1136/archdischild-2013-305034

    Article  PubMed  Google Scholar 

  116. Gardiner HM, Matsui H, Roughton M, Greenwald SE, Diemert A, Taylor MJ, Hecher K (2014) Cardiac function in 10-year-old twins following different fetal therapies for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 43(6):652–657. doi:10.1002/uog.13279

    Article  CAS  PubMed  Google Scholar 

  117. Cheung Y, Taylor M, Fisk N, Redington A, Gardiner H (2000) Fetal origins of reduced arterial distensibility in the donor twin in twin-twin transfusion syndrome. Lancet 355(9210):1157–1158

    Article  CAS  PubMed  Google Scholar 

  118. Gardiner H (2008) Intrauterine programming of the cardiovascular system. Ultrasound Obstet Gynecol 32(4):481–484

    Article  CAS  PubMed  Google Scholar 

  119. Patterson AJ, Zhang L (2010) Hypoxia and fetal heart development. Curr Mol Med 10(7):653–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tong W, Xiong F, Li Y, Zhang L (2013) Hypoxia inhibits cardiomyocyte proliferation in fetal rat hearts via upregulating TIMP-4. Am J Phys Regul Integr Comp Phys 304(8):R613–R620. doi:10.1152/ajpregu.00515.2012

    CAS  Google Scholar 

  121. Giussani DA, Spencer JA, Moore PJ, Bennet L, Hanson MA (1993) Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol 461:431–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vonnahme KA, Hess BW, Hansen TR, McCormick RJ, Rule DC, Moss GE, Murdoch WJ, Nijland MJ, Skinner DC, Nathanielsz PW, Ford SP (2003) Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep. Biol Reprod 69(1):133–140. doi:10.1095/biolreprod.102.012120

    Article  CAS  PubMed  Google Scholar 

  123. Dong F, Ford SP, Fang CX, Nijland MJ, Nathanielsz PW, Ren J (2005) Maternal nutrient restriction during early to mid gestation up-regulates cardiac insulin-like growth factor (IGF) receptors associated with enlarged ventricular size in fetal sheep. Growth Hormon IGF Res 15(4):291–299. doi:10.1016/j.ghir.2005.05.003

    Article  CAS  Google Scholar 

  124. Han HC, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ, Hansen TR (2004) Maternal nutrient restriction alters gene expression in the ovine fetal heart. J Physiol 558(Pt 1):111–121. doi:10.1113/jphysiol.2004.061697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Campbell ME, Williams SJ, Veerareddy S, Davidge ST (2005) Maternal nutrient restriction reduces carotid artery constriction without increasing nitric oxide synthesis in the late gestation rat fetus. Pediatr Res 58(5):840–844. doi:10.1203/01.PDR.0000181376.83137.ED

    Article  CAS  PubMed  Google Scholar 

  126. Lisowski LA, Verheijen PM, Copel JA, Kleinman CS, Wassink S, Visser GH, Meijboom EJ (2010) Congenital heart disease in pregnancies complicated by maternal diabetes mellitus. An international clinical collaboration, literature review, and meta-analysis. Herz 35(1):19–26. doi:10.1007/s00059-010-3244-3

    Article  PubMed  Google Scholar 

  127. Gardiner HM, Pasquini L, Wolfenden J, Kulinskaya E, Li W, Henein M (2006) Increased periconceptual maternal glycated haemoglobin in diabetic mothers reduces fetal long axis cardiac function. Heart 92(8):1125–1130. doi:10.1136/hrt.2005.076885

    Article  CAS  PubMed  Google Scholar 

  128. Fan X, Turdi S, Ford SP, Hua Y, Nijland MJ, Zhu M, Nathanielsz PW, Ren J (2011) Influence of gestational overfeeding on cardiac morphometry and hypertrophic protein markers in fetal sheep. J Nutr Biochem 22(1):30–37. doi:10.1016/j.jnutbio.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  129. Dong F, Ford SP, Nijland MJ, Nathanielsz PW, Ren J (2008) Influence of maternal undernutrition and overfeeding on cardiac ciliary neurotrophic factor receptor and ventricular size in fetal sheep. J Nutr Biochem 19(6):409–414. doi:10.1016/j.jnutbio.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  130. Turdi S, Ge W, Hu N, Bradley KM, Wang X, Ren J (2013) Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects. J Mol Cell Cardiol 55:117–129. doi:10.1016/j.yjmcc.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  131. Kandadi MR, Hua Y, Zhu M, Turdi S, Nathanielsz PW, Ford SP, Nair S, Ren J (2013) Influence of gestational overfeeding on myocardial proinflammatory mediators in fetal sheep heart. J Nutr Biochem 24(11):1982–1990. doi:10.1016/j.jnutbio.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  132. Gardiner H (2005) Response of the fetal heart to changes in load: from hyperplasia to heart failure. Heart 91(7):871–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Marciniak A, Claus P, Sutherland GR, Marciniak M, Karu T, Baltabaeva A, Merli E, Bijnens B, Jahangiri M (2007) Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study. Eur Heart J 28(21):2627–2636. doi:10.1093/eurheartj/ehm072

    Article  PubMed  Google Scholar 

  134. Alberry M, Soothill P (2007) Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 92(1):F62–F67. doi:10.1136/adc.2005.082297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huang ST, Vo KC, Lyell DJ, Faessen GH, Tulac S, Tibshirani R, Giaccia AJ, Giudice LC (2004) Developmental response to hypoxia. FASEB J 18(12):1348–1365. doi:10.1096/fj.03-1377com

    Article  CAS  PubMed  Google Scholar 

  136. Delaughter MC, Taffet GE, Fiorotto ML, Entman ML, Schwartz RJ (1999) Local insulin-like growth factor I expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB J 13(14):1923–1929

    CAS  PubMed  Google Scholar 

  137. Price WA, Stiles AD, Moats-Staats BM, D’Ercole AJ (1992) Gene expression of insulin-like growth factors (IGFs), the type 1 IGF receptor, and IGF-binding proteins in dexamethasone-induced fetal growth retardation. Endocrinology 130(3):1424–1432. doi:10.1210/endo.130.3.1371449

    CAS  PubMed  Google Scholar 

  138. Cordeiro A, Neto A, Carvalho F, Ramalho C, Dória S (2014) Relevance of genomic imprinting in intrauterine human growth expression of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 imprinted genes. J Assist Reprod Genet 31(10):1361–1368

    Article  PubMed  PubMed Central  Google Scholar 

  139. Thornburg K, Jonker S, O’Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106(1):289–299. doi:10.1016/j.pbiomolbio.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  140. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566. doi:10.1056/NEJM199005313222203

    Article  CAS  PubMed  Google Scholar 

  141. Konje JC, Bell SC, Morton JJ, de Chazal R, Taylor DJ (1996) Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin Sci (Lond) 91(2):169–175

    Article  CAS  Google Scholar 

  142. Faber JJ, Anderson DF, Louey S, Thornburg KL, Giraud GD (2011) Insignificant response of the fetal placental circulation to arterial hypotension in sheep. J Appl Physiol (1985) 111 (4):1042–1047. doi:10.1152/japplphysiol.00345.2011

  143. Beauchamp B, Thrush AB, Quizi J, Antoun G, McIntosh N, Al-Dirbashi OY, Patti ME, Harper ME (2015) Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring. Biosci Rep. doi:10.1042/BSR20150007

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana O. Miranda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, J.O., Ramalho, C., Henriques-Coelho, T. et al. Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function. Heart Fail Rev 22, 861–877 (2017). https://doi.org/10.1007/s10741-017-9638-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9638-z

Keywords