Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lepton flavor violation and seesaw symmetries

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

When the standard model is extended with right-handed neutrinos the symmetries of the resulting Lagrangian are enlarged with a new global U(1) R Abelian factor. In the context of minimal seesaw models we analyze the implications of a slightly broken U(1) R symmetry on charged lepton flavor violating decays. We find, depending on the R-charge assignments, models where charged lepton flavor violating rates can be within measurable ranges. In particular, we show that in the resulting models due to the structure of the light neutrino mass matrix muon flavor violating decays are entirely determined by neutrino data (up to a normalization factor) and can be sizable in a wide right-handed neutrino mass range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwetz, T., Tortola, M., Valle, J.W.F.: Where we are on θ 13: addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’. New J. Phys. 13, 109401 (2011). arXiv:1108.1376 [hep-ph]

    Article  ADS  Google Scholar 

  2. Gonzalez-Garcia, M.C., Maltoni, M., Salvado, J.: Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0. JHEP 1004, 056 (2010). arXiv:1001.4524 [hep-ph]

    Article  ADS  Google Scholar 

  3. Weinberg, S.: Phys. Rev. D 22, 1694 (1980)

    Article  ADS  Google Scholar 

  4. Zee, A.: A theory of lepton number violation, neutrino majorana mass, and oscillation. Phys. Lett. B93, 389 (1980)

    Google Scholar 

  5. Aristizabal Sierra, D., Restrepo, D.: Leptonic charged higgs decays in the Zee model. JHEP 0608, 036 (2006) [hep-ph/0604012]

    Article  ADS  Google Scholar 

  6. Zee, A.: Quantum numbers of majorana neutrino masses. Nucl. Phys. B 264, 99 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  7. Babu, K.S.: Model of ‘calculable’ majorana neutrino masses. Phys. Lett. B 203, 132 (1988)

    Article  ADS  Google Scholar 

  8. Babu, K.S., Macesanu, C.: Two-loop neutrino mass generation and its experimental consequences. Phys. Rev. D67, 073010 (2003) [hep-ph/0212058]

    ADS  Google Scholar 

  9. Aristizabal Sierra, D., Hirsch, M.: Experimental tests for the Babu–Zee two-loop model of majorana neutrino masses. JHEP 0612, 052 (2006) [hep-ph/0609307]

    Article  ADS  Google Scholar 

  10. Nebot, M., Oliver, J.F., Palao, D., Santamaria, A.: Prospects for the Zee–Babu model at the CERN LHC and low energy experiments. Phys. Rev. D77, 093013 (2008). arXiv:0711.0483 [hep-ph]

    ADS  Google Scholar 

  11. Aristizabal Sierra, D., Hirsch, M., Kovalenko, S.G.: Leptoquarks: neutrino masses and accelerator phenomenology. Phys. Rev. D77, 055011 (2008). arXiv:0710.5699 [hep-ph]

    ADS  Google Scholar 

  12. Fileviez Perez, P., Wise, M.B.: On the origin of neutrino masses. Phys. Rev. D80, 053006 (2009). arXiv:0906.2950 [hep-ph]

    Google Scholar 

  13. Babu, K.S., Julio, J.: Two-loop neutrino mass generation through leptoquarks. Nucl. Phys. B841, 130–156 (2010). arXiv:1006.1092 [hep-ph]

    Article  ADS  Google Scholar 

  14. Minkowski, P.: μe γ at a rate of one out of 1-Billion muon decays?. Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  15. Mohapatra, R.N., Senjanovic, G.: Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  16. Yanagida, T.: Horizontal symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95 (1979)

    Google Scholar 

  17. Gell-Mann, M., Ramond, P., Slansky, R.: Complex spinors and unified theories. Conf. Proc. C 790927, 315 (1979)

    Google Scholar 

  18. Glashow, S.L.: The future of elementary particle physics. NATO Adv. Study Inst. Ser. B Phys. 59, 687 (1980)

    Google Scholar 

  19. Schechter, J., Valle, J.W.F.: Neutrino masses in SU(2) ×U(1) theories. Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  20. Aristizabal Sierra, D., Degee, A., Kamenik, J.F.: JHEP 1207, 135 (2012). arXiv:1205.5547 [hep-ph]

    Article  ADS  Google Scholar 

  21. Gavela, M.B., Hambye, T., Hernandez, D., Hernandez, P.: Minimal flavour seesaw models. JHEP 0909, 038 (2009). arXiv:0906.1461 [hep-ph]

    Article  ADS  Google Scholar 

  22. Mohapatra, R.N., Valle, J.W.F.: Neutrino mass and baryon number nonconservation in superstring models. Phys. Rev. D 34, 1642 (1986)

    Article  ADS  Google Scholar 

  23. Branco, G.C., Grimus, W., Lavoura, L.: The seesaw mechanism in the presence of a conserved lepton number. Nucl. Phys. B 312, 492 (1989)

    Article  ADS  Google Scholar 

  24. Abada, A., Biggio, C., Bonnet, F., Gavela, M.B., Hambye, T.: Low energy effects of neutrino masses. JHEP 0712, 061 (2007). arXiv:0707.4058 [hep-ph]

    Article  ADS  Google Scholar 

  25. Gu, P.-H., Hirsch, M., Sarkar, U., Valle, J.W.F.: Neutrino masses, leptogenesis and dark matter in hybrid seesaw. Phys. Rev. D 79, 033010 (2009). arXiv:0811.0953 [hep-ph]

    Article  ADS  Google Scholar 

  26. Ibanez, D., Morisi, S., Valle, J.W.F.: Inverse tri-bimaximal type-III seesaw and lepton flavor violation. Phys. Rev. D 80, 053015 (2009). arXiv:0907.3109 [hep-ph]

    Article  ADS  Google Scholar 

  27. Forero, D.V., Morisi, S., Tortola, M., Valle, J.W.F.: Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw. JHEP 1109, 142 (2011). arXiv:1107.6009 [hep-ph]

    Article  ADS  Google Scholar 

  28. Nakamura, K., et al., Particle Data Group Collaboration: Review of particle physics. J. Phys. G G 37, 075021 (2010)

    Article  Google Scholar 

  29. http://meg.icepp.s.u-tokyo.ac.jp/docs/prop_psi/proposal.pdf

  30. http://www.physi.uni-heidelberg.de/Forschung/he/mu3e/documents/LOI_Mu3e_PSI.pdf

  31. Ankenbrandt, C., et al.: Using the Fermilab proton source for a muon to electron conversion experiment. arXiv:physics/0611124

  32. Ilakovac, A., Pilaftsis, A.: Flavor violating charged lepton decays in seesaw-type models. Nucl. Phys. B, 437, 491 (1995) [hep-ph/9403398]

    Article  ADS  Google Scholar 

  33. Adam, J., et al., MEG Collaboration: New limit on the lepton-flavour violating decay μ  + e  +  γ. Phys. Rev. Lett. 107, 171801 (2011). arXiv:1107.5547 [hep-ex]

    Article  ADS  Google Scholar 

  34. Bellgardt, U., et al., SINDRUM Collaboration: Search for the decay μ  + e  +  e  +  e −. Nucl. Phys. B 299, 1 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Aristizabal Sierra.

Additional information

The 5th International Symposium on Symmetries in Subatomic Physics (SSP 2012), Groningen, The Netherlands, 18–22 June 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristizabal Sierra, D. Lepton flavor violation and seesaw symmetries. Hyperfine Interact 214, 55–61 (2013). https://doi.org/10.1007/s10751-013-0772-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0772-2

Keywords