Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stringent tests of QED using highly charged ions

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The present status of tests of QED with highly charged ions is reviewed. The theoretical predictions for the Lamb shift and the transition energies are compared with available experimental data. Recent achievements in studies of the hyperfine splitting and the g-factor isotope shift with highly charged ions are reported. Special attention is paid to tests of QED within and beyond the Furry picture at strong-coupling regime. Prospects for tests of QED at supercritical fields that can be created in low-energy heavy-ion collisions are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glazov, D.A., et al.: Tests of fundamental theories with heavy ions at low-energy regime. Hyperfine Interact. 199, 71–83 (2011)

    Article  ADS  Google Scholar 

  2. Kozhedub, Y.S., et al.: Nuclear deformation effect on the binding energies in heavy ions. Phys. Rev. A 77, 032501 (2008)

    Article  ADS  Google Scholar 

  3. Yerokhin, V.A., Shabaev, V.M.: Lamb shift of n = 1 and n = 2 states of hydrogen-like atoms, 1 ≤ Z ≤ 110. J. Phys. Chem. Ref. Data 44, 033103 (2015)

    Article  ADS  Google Scholar 

  4. Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Evaluation of the two-loop self-energy correction to the ground state energy of H-like ions to all orders in Z α. Eur. Phys. J. D 25, 203–238 (2003)

    Article  ADS  Google Scholar 

  5. Shabaev, V.M., et al.: Recoil correction to the ground-state energy of hydrogenlike atoms. Phys. Rev. A 57, 4235–4239 (1998)

    Article  ADS  Google Scholar 

  6. Plunien, G., Soff, G.: Nuclear-polarization contribution to the Lamb shift in actinide nuclei. Phys. Rev. A 51, 1119–1131 (1995). Erratum: Phys. Rev. A 53, 4614 (1996)

    Article  ADS  Google Scholar 

  7. Nefiodov, A.V., et al.: Nuclear polarization effects in spectra of multicharged ions. Phys. Lett. A 222, 227–232 (1996)

    Article  ADS  Google Scholar 

  8. Gumberidze, A., et al.: Quantum electrodynamics in strong electric fields: The ground-state Lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 94, 223001 (2005)

    Article  ADS  Google Scholar 

  9. Schweppe, J., et al.: Measurement of the Lamb shift in lithiumlike uranium (U89+). Phys. Rev. Lett. 66, 1434–1437 (1991)

    Article  ADS  Google Scholar 

  10. Brandau, C., et al.: Precise determination of the 2s 1/2 − 2p 1/2 splitting in very heavy lithiumlike ions utilizing dielectronic recombination. Phys. Rev. Lett. 91, 073202 (2003)

    Article  ADS  Google Scholar 

  11. Beiersdorfer, P., et al.: Measurement of the two-loop Lamb shift in lithiumlike U89+. Phys. Rev. Lett. 95, 233003 (2005)

    Article  ADS  Google Scholar 

  12. Yerokhin, V.A., Artemyev, A.N., Shabaev, V.M.: QED treatment of electron correlation in Li-like ions. Phys. Rev. A 75, 062501 (2007)

    Article  ADS  Google Scholar 

  13. Sapirstein, J., Cheng, K.T.: S-matrix calculations of energy levels of the lithium isoelectronic sequence. Phys. Rev. A 83, 012504 (2011)

    Article  ADS  Google Scholar 

  14. Chantler, C.T., et al.: Testing three-body quantum electrodynamics with trapped Ti20+ ions: Evidence for a Z-dependent divergence between experiment and calculation. Phys. Rev. Lett. 109, 153001 (2012)

    Article  ADS  Google Scholar 

  15. Trassinelli, M., et al.: Observation of the 2p 3/2 → 2s 1/2 intra-shell transition in He-like uranium. Eur. Phys. Lett. 87, 63001 (2009)

    Article  ADS  Google Scholar 

  16. Amaro, P., et al.: Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon. Phys. Rev. Lett. 109, 043005 (2012)

    Article  ADS  Google Scholar 

  17. Kubicek, K., et al.: Transition energy measurements in hydrogenlike and heliumlike ions strongly supporting bound-state QED calculations. Phys. Rev. A 90, 032508 (2014)

    Article  ADS  Google Scholar 

  18. Beiersdorfer, P., Brown, G.V.: Experimental study of the x-ray transitions in the heliumlike isoelectronic sequence: Updated results. Phys. Rev. A 91, 032514 (2015)

    Article  ADS  Google Scholar 

  19. Epp, S.W., et al.: Single-photon excitation of Kα in heliumlike Kr34+: Results supporting quantum electrodynamics predictions. Phys. Rev. A 92, 020502(R) (2015)

    Article  ADS  Google Scholar 

  20. Machado, J., et al.: High-precision measurements of n = 2 → n = 1 transition energies and level widths in He- and Be-like argon ions. Phys. Rev. A 97, 032517 (2018)

    Article  ADS  Google Scholar 

  21. Artemyev, A.N., et al.: QED calculation of the n = 1 and n = 2 energy levels in He-like ions. Phys. Rev. A 71, 062104 (2005)

    Article  ADS  Google Scholar 

  22. Klaft, I., et al.: Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike 209Bi82+. Phys. Rev. Lett. 73, 2425–2427 (1994)

    Article  ADS  Google Scholar 

  23. Crespo Lopez-Urrutia, J.R., et al.: Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike 165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77, 826–829 (1996)

    Article  ADS  Google Scholar 

  24. Crespo Lopez-Urrutia, J.R., et al.: Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions 185Re74+ and 187Re74+. Phys. Rev. A 57, 879–887 (1998)

    Article  ADS  Google Scholar 

  25. Seelig, P., et al.: Ground state hyperfine splitting of hydrogenlike 207Pb81+ by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824–4827 (1998)

    Article  ADS  Google Scholar 

  26. Beiersdorfer, P., et al.: Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)

    Article  ADS  Google Scholar 

  27. Ullmann, J., et al.: An improved value for the hyperfine splitting of hydrogen-like 209Bi82+. J. Phys. B 48, 144022 (2015)

    Article  ADS  Google Scholar 

  28. Shabaev, V.M., et al.: Ground-state hyperfine splitting of high-Z hydrogenlike ions. Phys. Rev. A 56, 252–255 (1997)

    Article  ADS  Google Scholar 

  29. Sen’kov, R.A., Dmitriev, V.F.: Nuclear magnetization distribution and hyperfine splitting in Bi82+ ion. Nucl. Phys. A 706, 351–364 (2002)

    Article  ADS  Google Scholar 

  30. Shabaev, V.M., et al.: Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959–3962 (2001)

    Article  ADS  Google Scholar 

  31. Raghavan, P.: Table of nuclear moments. At. Data Nucl. Data Tables 42, 189–291 (1989)

    Article  ADS  Google Scholar 

  32. Volotka, A.V., et al.: Test of many-electron QED effects in the hyperfine splitting of heavy high-Z Ions. Phys. Rev. Lett. 108, 073001 (2012)

    Article  ADS  Google Scholar 

  33. Ullmann, J., et al.: High precision hyperfine measurements in bismuth challenge bound-state strong-field QED. Nat. Commun. 8, 15484 (2017)

    Article  ADS  Google Scholar 

  34. Skripnikov, L.V., et al.: New nuclear magnetic moment of 209Bi: Resolving the bismuth hyperfine puzzle. Phys. Rev. Lett. 120, 093001 (2018)

    Article  ADS  Google Scholar 

  35. Häffner, H., et al.: High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon. Phys. Rev. Lett. 85, 5308–5311 (2000)

    Article  ADS  Google Scholar 

  36. Shabaev, V.M., Yerokhin, V.A.: Recoil correction to the bound-electron g factor in H-like atoms to all orders in Z. Phys. Rev. Lett. 88, 091801 (2002)

    Article  ADS  Google Scholar 

  37. Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Self-energy correction to the bound-electron g factor in H-like ions. Phys. Rev. Lett. 89, 143001 (2002)

    Article  ADS  Google Scholar 

  38. Pachucki, K., et al.: Complete two-loop correction to the bound-electron g factor. Phys. Rev. A 72, 022108 (2005)

    Article  ADS  Google Scholar 

  39. Sturm, S., Werth, G., Blaum, K.: Electron g-factor determinations in Penning traps. Annalen Der Physik 525, 620–635 (2013)

    Article  ADS  Google Scholar 

  40. Wagner, A., et al.: g factor of lithiumlike silicon 28Si11+. Phys. Rev. Lett. 110, 033003 (2013)

    Article  ADS  Google Scholar 

  41. Sturm, S., et al.: High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014)

    Article  ADS  Google Scholar 

  42. Shabaev, V.M., et al.: Theory of bound-electron g factor in highly charged ions. J. Phys. Chem. Ref. Data 44, 031205 (2015)

    Article  ADS  Google Scholar 

  43. Czarnecki, A., et al.: Two-loop binding corrections to the electron gyromagnetic factor. Phys. Rev. Lett. 120, 043203 (2018)

    Article  ADS  Google Scholar 

  44. Zatorski, J., et al.: Extraction of the electron mass from g-factor measurements on light hydrogenlike ions. Phys. Rev. A 96, 012502 (2017)

    Article  ADS  Google Scholar 

  45. Köhler, F., et al.: Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Commun. 7, 10246 (2016)

    Article  ADS  Google Scholar 

  46. Yan, Z.-C.: Calculations of magnetic moments for three-electron atomic systems. Phys. Rev. Lett. 86, 5683–5686 (2001)

    Article  ADS  Google Scholar 

  47. Yan, Z.-C.: Calculations of magnetic moments for lithium-like ions. J. Phys. B 35, 1885–1892 (2002)

    Article  ADS  Google Scholar 

  48. Hegstrom, R.A.: Magnetic moment of atomic lithium. Phys. Rev. A 11, 421–426 (1975)

    Article  ADS  Google Scholar 

  49. Shabaev, V.M., et al.: Recoil effect on the g factor of Li-like ions. Phys. Rev. Lett. 119, 263001 (2017)

    Article  ADS  Google Scholar 

  50. Shabaev, V.M.: QED theory of the nuclear recoil effect on the atomic g factor. Phys. Rev. A 64, 052104 (2001)

    Article  ADS  Google Scholar 

  51. Malyshev, A.V., et al.: Nuclear recoil effect on the g-factor of heavy ions: Prospects for tests of quantum electrodynamics in a new region. JETP Lett. 106, 765–770 (2017)

    Article  ADS  Google Scholar 

  52. Greiner, W., Muller, B., Rafelski, J.: Quantum Electrodynamics of Strong Fields. Springer, Berlin (1985)

    Book  Google Scholar 

  53. Maltsev, I.A., et al.: Pair production in low-energy collisions of uranium nuclei beyond the monopole approximation. Nucl. Instr. Methods Phys. Res. B 408, 97–99 (2017)

    Article  ADS  Google Scholar 

  54. Popov, R.V., et al.: One-center calculations of the electron-positron pair creation in low-energy collisions of heavy bare nuclei. Eur. Phys. J. D 72, 115 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 17-12-01097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shabaev.

Additional information

This article is part of the Topical Collection on Proceedings of the 7th Symposium on Symmetries in Subatomic Physics (SSP 2018), Aachen, Germany, 10-15 June 2018

Guest Edited by Hans Ströher, Jörg Pretz, Livia Ludhova and Achim Stahl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabaev, V.M., Bondarev, A.I., Glazov, D.A. et al. Stringent tests of QED using highly charged ions. Hyperfine Interact 239, 60 (2018). https://doi.org/10.1007/s10751-018-1537-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-018-1537-8

Keywords

PACS