Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Nab to determine correlations in unpolarized neutron decay

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The Nab experiment will measure the ratio of the weak axial-vector and vector coupling constants λ = gA/gV with precision δλ/λ ∼ 3 × 10− 4 and search for a Fierz term bF at a level ΔbF < 10− 3. The Nab detection system uses thick, large area, segmented silicon detectors to very precisely determine the decay proton’s time of flight and the decay electron’s energy in coincidence and reconstruct the correlation between the antineutrino and electron momenta. Excellent understanding of systematic effects affecting timing and energy reconstruction using this detection system are required. To explore these effects, a series of ex situ studies have been undertaken, including a search for a Fierz term at a less sensitive level of ΔbF < 10− 2 in the beta decay of 45Ca using the UCNA spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. González-Alonso, M., Naviliat-Cuncic, O., Severijns, N.: New physics searches in nuclear and neutron β decay. Prog. Part. Nucl. Phys. 104, 165–223 (2019). https://doi.org/10.1016/j.ppnp.2018.08.002. arXiv:1803.08732

    Article  ADS  Google Scholar 

  2. Hardy, J.C., Towner, I.S.: . Phys. Rev. C 91(2), 025501 (2015). https://doi.org/10.1103/PhysRevC.91.025501

    Article  ADS  Google Scholar 

  3. Tanabashi, M., et al.: Review of particle physics. Phys. Rev. D98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    ADS  Google Scholar 

  4. Hickerson, K.P., et al.: . Phys. Rev. C 96(4), 042501 (2017). https://doi.org/10.1103/PhysRevC.96.042501 [Addendum: Phys. Rev.C96,no.5,059901(2017)]

    Article  ADS  Google Scholar 

  5. González-Alonso, M., Naviliat-Cuncic, O.: . Phys. Rev. C 94(3), 035503 (2016). https://doi.org/10.1103/PhysRevC.94.035503

    Article  ADS  Google Scholar 

  6. Hayen, L., Severijns, N., Bodek, K., Rozpedzik, D., Mougeot, X.: . Rev. Mod. Phys. 90(1), 015008 (2018). https://doi.org/10.1103/RevModPhys.90.015008

    Article  ADS  Google Scholar 

  7. Baeßler, S., et al.: . AIP Conf. Proc. 1560, 114 (2013). https://doi.org/10.1063/1.4826731

    Article  ADS  Google Scholar 

  8. Salas-Bacci, A., et al.: . Nucl. Instrum. Meth. A735, 408 (2014). https://doi.org/10.1016/j.nima.2013.09.059

    Article  ADS  Google Scholar 

  9. Broussard, L. J., et al.: . Nucl. Instrum. Meth. A849, 83 (2017). https://doi.org/10.1016/j.nima.2016.12.030

    Article  ADS  Google Scholar 

  10. Broussard, L.J., et al.: . J. Phys. Conf. Ser. 876(1), 012005 (2017). https://doi.org/10.1088/1742-6596/876/1/012005

    Article  Google Scholar 

  11. Harrison, D.: Low-energy proton accelerator for detector testing. The University of Manitoba, Master’s thesis (2013)

    Google Scholar 

  12. Radford, D.: SIGGEN. http://radware.phy.ornl.gov/gretina/siggen (2017)

  13. Agostinelli, S., et al.: . Nucl. Instrum. Meth. A506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  14. Salvat, F., Fernández-Varea, J.M., Sempau, J.: . http://www.oecd-nea.org/globalsearch/download.php?doc=77434 (2011)

  15. Plaster, B., et al.: . Phys. Rev. C86, 055501 (2012). https://doi.org/10.1103/PhysRevC.86.055501

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the Laboratory Directed Research and Development Program [project 8215] of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy, and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics [contracts DE-AC05-00OR2272, DE-AC52-06NA25396, DE-FG02-03ER41258, DE-FG02-ER41042, DE-SC0008107, and DE-SC0014622], the National Science Foundation [contracts 1126683, 1506320, 1614839, 1615153], the Natural Sciences and Engineering Research Council of Canada [contract SAPPJ/32-2016], and the Research Foundation – Flanders (FWO). We are grateful to the UCNA collaboration for use of their spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Broussard.

Additional information

This article is part of the Topical Collection on Proceedings of the 7th Symposium on Symmetries in Subatomic Physics (SSP 2018), Aachen, Germany, 10-15 June 2018

Guest Edited by Hans Ströher, Jörg Pretz, Livia Ludhova and Achim Stahl

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broussard, L.J., Baeßler, S., Bailey, T.L. et al. Using Nab to determine correlations in unpolarized neutron decay. Hyperfine Interact 240, 1 (2019). https://doi.org/10.1007/s10751-018-1538-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-018-1538-7

Keywords