Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate

  • Original Article
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Two variants of open photobioreactors were operated at surface-to-volume ratios up to 170 m−1. The mean values for July and September obtained for photobioreactor PB-1 of 224 m2 culture area (length 28 m, inclination 1.7%, thickness of algal culture layer 6 mm), operated in Třeboň (49N), Czech Republic, were: net areal productivity, P net = 23.5 and 11.1 g dry weight (DW) m−2 d−1; net photosynthetic efficiency (based on PAR – Photosynthetic Active Radiation), η = 6.48 and 5.98%. For photobioreactor PB-2 of 100 m2 culture area (length 100 m, inclination 1.6%, thickness of algal culture layer 8 mm) operated in Southern Greece (Kalamata, 37N) the mean values for July and October were: P net = 32.2 and 18.1 g DW m−2 d−1, η = 5.42 and 6.07%. The growth rate of the alga was practically linear during the fed-batch cultivation regime up to high biomass densities of about 40 g DW L−1, corresponding to an areal density of 240 g DW m−2 in PB-1 and 320 g DW m−2 in PB-2. Night biomass loss (% of the daylight productivity, P L) caused by respiration of algal cells were: 9–14% in PB-1; 6.6–10.8% in PB-2. About 70% of supplied CO2 was utilized by the algae for photosynthesis. The concentration of dissolved oxygen (DO) increased from about 12 mg L−1 at the beginning to about 35 mg L−1 at the end of the 100 m long path of suspension flow in PB-2 at noon on clear summer days. Dissipation of hydraulic energy and some parameters of turbulence in algal suspension on culture area were estimated quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

A :

size of the culture area (m2)

C O 2 :

concentration (DO) of dissolved oxygen (gO2m−3)

C O2,0 :

DO concentration at the beginning of culture area (gO2m−3)

C O2,L :

DO concentration at the end of culture area (gO2m−3)

C O 2*:

DO concentration in equilibrium with oxygen content in ambient atmosphere (gO2m−3)

C O2,mean :

mean DO concentration on culture area (gO2m−3)

D CO 2 :

carbon dioxide diffusion coefficient in the algal suspension (m2h−1)

D O 2 :

oxygen diffusion coefficient in the algal suspension (m2h−1)

G :

rate of carbon dioxide supply into the bioreactor (gCO2h−1)

h :

thickness of the suspension layer on culture area (m)

I :

inclination of the culture area (−)

I 0 :

PAR (Photosynthetically Active Radiation) irradiance (Wm−2)

K H :

Henry's constant for carbon dioxide (gCO2m−3kPa−1)

K I :

light saturation constant (Wm−2)

K L,CO 2 :

mass transfer coefficient for carbon dioxide (mh−1)

K L,O 2 :

mass transfer coefficient for oxygen (mh−1)

L :

length of the culture area (m)

n :

roughness of the culture area (m1/3s−1/2)

pCO2 * :

partial pressure of carbon dioxide in ambient atmosphere (kPa)

pCO2,mean :

mean partial pressure of carbon dioxide in algal culture (kPa)

P L :

daylight productivity (gDWm−2d−1)

P net :

net algae productivity calculated from the differences between each morning algal mass in the bioreactor (gDWm−2d−1)

Q :

volumetric flow rate of the suspension (m3h−1)

Q CO 2 :

volumetric rate of carbon dioxide supply (m3h−1)

R CO 2, mean :

mean rate of carbon dioxide consumption by algae referred to 1m2 of culture area (gCO2m−2h−1)

R O 2 :

local (at the distance x) rate of oxygen evolution by algae referred to 1m2 of culture area (gO2m−2h−1)

R O 2 ,mean :

mean rate of oxygen evolution by algae referred to 1m2 of culture area (gO2m−2h−1)

u :

velocity of suspension flow on culture area (mh−1)

u mean :

mean velocity of suspension flow on culture area (mh−1)

V :

volume of the suspension in the bioreactor (L)

x :

coordinate considered in the direction of flow of the suspension on culture area (m)

X :

biomass concentration (gDWL−1)

Y :

mass of carbon dioxide consumed by algae, related to mass of oxygen evolved by algae (gCO2gO2 −1)

Z :

loss of supplied CO2 not absorbed in the suspension (gh−1)

ϕ 0 :

quantity of CO2 absorbed in suspension related to quantity of supplied CO2 (−)

κ:

Karman's constant (−)

|v|:

velocity of turbulent eddies (mh−1)

ρCO2 :

density of gaseous carbon dioxide (gm−3)

References

  • Akyev AY, Tsoglin LN (1992) Effect of oxygen on O2 exchange and increase of cell biomass in the development cycle of Chlorella. Soviet Plant Physiol 39:312–317

    Google Scholar 

  • Amman ECB, Lynch VH (1966) Gas exchange of algae. II. Effect of oxygen, helium, and argon on the photosynthesis of Chlorella pyrenoidosa. Appl Microbiol 14:178–183

    Google Scholar 

  • Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge, pp 293

    Google Scholar 

  • Beljanin VN, Sidko FJ, Trenkenschu AP (1980) Energetika fotosintezirujushchei kultury Mikrovodoroslei (Energetics of photosynthetically active culture of microalgae). Nauka, Sibirskoe otdelenie, Novosibirsk

  • Bird RB, Stewart WE, Lightfoot EN (1968) Prenosové jevy (Transport phenomena). Academia, Praha, pp 799

    Google Scholar 

  • Borowitzka MA (1999a) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from Microalgae. Taylor & Francis Ltd, London, pp 387–409

  • Borowitzka MA (1999b) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Buhr HO, Miller SB (1983) A dynamic model of the high-rate algal bacterial wastewater treatment pond. Water Res 17:29–37

    Article  CAS  Google Scholar 

  • Burlew JS (ed.) (1953) Algal Culture from Laboratory to Pilot Plant. Carnegie Institute of Washington, DC, pp 357

  • Doucha J, Lívanský K, Bínová J, Kubicko P, Novotný P (1993) Thin-layer high density microalgal culture system: Productivity and energy costs. In: Masojídek J, Setlík I (eds) Progres in Biotechnology of Photoautotrophic Microorganisms. Book of Abstracts, 6th International Conference on Applied Algology, Ceské Budejovice 6–11

  • Doucha J, Lívanský K (1995) Equipment for outdoor thin-layer cultivation of algae. Czech Patent 279579

  • Doucha J, Lívanský K (1998, 1999) Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process. Greek Patent 1002924; USA Patent 5981271 A

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Fernández FGA, Camacho FG, Pérez JAS, Sevilla JMF, Grima EM (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58:605–616

    Article  PubMed  Google Scholar 

  • Gallacher L, Chobbs CD (1981) Rasprostranenie zagryaznenii v estuarii. [Dispersion of pollutions in estuary.]. In: James A (ed) Matematicheskie modeli kontrolya zagryaznenii vody Mathematical Models in Water Pollution Control. Moskva, Mir. pp 229–261

  • Goldman JC (1979a) Outdoor algal mass cultures – I. Applications. Water Res 13:1–19

    Google Scholar 

  • Goldman JC (1979b) Outdoor algal mass cultures – II. Photosynthetic yield limitations. Water Res 13:119–136

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314

    Article  Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichý V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343

    Article  CAS  Google Scholar 

  • Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass culture of microalgae: areal density as an important factor for achieving maximal productivity. Biomass 15:211–221

    Article  Google Scholar 

  • Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal Culture from Laboratory to Pilot Plant. Carnegie Institute of Washington DC, pp 63–158.

  • Lívanský K, Doucha J (1998) Influence of solar irradiance, culture temperature and CO2 supply on daily course of O2 evolution by Chlorella mass cultures in outdoor open thin-layer culture units. Arch Hydrobiol/Algolog Stud 89:137–149

    Google Scholar 

  • Lívanský K, Doucha J (1999) Liquid film mass transfer coefficients K L for O2 and CO2 desorption from open thin-layer microalgal cultures into atmosphere. Arch Hydrobiol Suppl 127/Algolog Stud 92:109–132

    Google Scholar 

  • Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74:136–144

    Article  PubMed  CAS  Google Scholar 

  • Nedbal L, Tichý V, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: Design and performance with respect to light energy input. In: Scheper T (ed) Advances in Biochemical Engineering/Biotechnology. Springer-Verlag, Berlin. pp 123–152

    Google Scholar 

  • Pulz O (2001) Photobioreactors: Production systems for phototrophic microorganisms. Appl Microb Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation–a general outline. In: Richmond A (ed) CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL. pp 245–263

    Google Scholar 

  • Richmond A (1988) A prerequisite for industrial microalga-culture efficient utilization of solar irradiation. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal Biotechnology. Amsterdam, Elsevier Science, pp 237–244

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millenium: A personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Sobczuk TM, Camacho FG, Rubio FC, Fernández FGA, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475

    Article  CAS  Google Scholar 

  • Soeder CJ (1986) An historical outlet of applied algology. In: Richmond A (ed) CRC Handbook of Microalgal Mass Culture, CRC Press, Inc., Boca Raton, Fl. pp 25–41

    Google Scholar 

  • Stengel E (1970) Anlagentype und Verfahren der technischen Algenmassenproduktion. Ber Dt Bot Ges 83:589–606

    CAS  Google Scholar 

  • Setlík I, Sust V, Málek I (1970) Dual purpose open circulation unit for large scale production of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algolog Stud (Trebon) 1:111–164

    Google Scholar 

  • Talbot P, Gortares MP, Lencki RW, Noue de la J (1991) Absorption of CO2 in algal mass culture systems: A different characterization approach. Biotechnol Bioeng 37:834–842

    Article  CAS  Google Scholar 

  • Tapie P, Bernard A (1988) Microalgae production: Technical and economic evaluations. Biotechnol Bioeng 32:873–885

    Article  Google Scholar 

  • Torzillo G, Giovanetti L, Bocci F, Materassi R (1984) Effect of oxygen concentration on the protein content of Spirulina biomass. Biotechnol Bioeng 26:1134–1135

    Article  CAS  Google Scholar 

  • Torzillo G, Accolla P, Pinzani E, Masojidek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291

    Article  CAS  Google Scholar 

  • Torzillo G (1997) Tubular bioreactors. In: Vonshak A (ed) Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis, London, pp 101–115

    Google Scholar 

  • Tredici MR, Zittelli GC (1997) In: Vonshak A (ed) Spirulina platensis (Arthrospira). Physiology, Cell-biology and Biotechnology. Taylor & Francis, London, pp 117–130

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: Tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  PubMed  CAS  Google Scholar 

  • Tredici MR (2004) Mass Production of Microalgae: Photobioreactors. In: Richmond A (ed) Handbook of Microalgal Culture. Blackwell Science Ltd, Oxford, pp 178–214

    Google Scholar 

  • Vonshak A (1997) Outdoor mass production of Spirulina: the basic concept. In: Vonshak A (ed) Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis, London. p 233

    Google Scholar 

  • Weissman JD, Goebel RP, Benemann JR (1988) Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 3:336–344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lívanský.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doucha, J., Lívanský, K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18, 811–826 (2006). https://doi.org/10.1007/s10811-006-9100-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-006-9100-4

Key Words