Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Semantic Framework for Proof Evidence

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Theorem provers produce evidence of proof in many different formats, such as proof scripts, natural deductions, resolution refutations, Herbrand expansions, and equational rewritings. In implemented provers, numerous variants of such formats are actually used: consider, for example, such variants of or restrictions to resolution refutations as binary resolution, hyper-resolution, ordered-resolution, paramodulation, etc. We propose the foundational proof certificates (FPC) framework for defining the semantics of a broad range of proof evidence. This framework allows both producers of proof certificates and the checkers of those certificates to have a clear formal definition of the semantics of a wide variety of proof evidence. Employing the FPC framework will allow one to separate a proof from its provenance and to allow anyone to construct their own proof checker for a given style of proof evidence. The foundation on which FPC relies is that of proof theory, particularly recent work into focused proof systems: such proof systems provide protocols by which a checker extracts information from the certificate (mediated by the so called clerks and experts) as well as performs various deterministic and non-deterministic computations. While we shall limit ourselves to first-order logic in this paper, we shall not limit ourselves in many other ways. The FPC framework is described for both classical and intuitionistic logics and for proof structures as diverse as resolution refutations, natural deduction, Frege proofs, and equality proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) Certified Programs and Proofs (CPP 2011), LNCS 7086, pp. 135–150 (2011)

  3. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput. Log. 13(1), 1–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barendregt, H.: The impact of the lambda calculus in logic and computer science. Bull. Symb. Log. 3(2), 181–215 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. J. Autom. Reason. 28(3), 321–336 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barendregt, H.P.: Introduction to generalized type systems. J. Funct. Program. 1(2), 125–154 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, New York (2004)

    Book  MATH  Google Scholar 

  8. Blanco, R., Miller, D.: Proof outlines as proof certificates: a system description. In: Cervesato, I., Schürmann, C. (eds.) Proceedings First International Workshop on Focusing, Suva, Fiji, 23rd November 2015, volume 197 of Electronic Proceedings in Theoretical Computer Science, pp. 7–14. Open Publishing Association (2015)

  9. Boespflug, M., Carbonneaux, Q., Hermant, O.: The \(\lambda {\varPi }\)-calculus modulo as a universal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pp. 28–43 (2012)

  10. Böhme, S., Weber, T.: Designing proof formats: a user’s perspective. In: Fontaine, P., Stump, A. (eds.) PxTP 2011: First International Workshop on Proof eXchange for Theorem Proving, pp 27–32 (2011)

  11. Chaudhuri, K.: Classical and intuitionistic subexponential logics are equally expressive. In: Dawar, A., Veith, H. (eds.) CSL 2010: Computer Science Logic. LNCS 6247, Brno, Czech Republic, pp. 185–199. Springer (2010)

  12. Chaudhuri, K., Hetzl, S., Miller, D.: A multi-focused proof system isomorphic to expansion proofs. J. Log. Comput. 26(2), 577–603 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Fifth International Conference on Theoretical Computer Science, IFIP 273, pp. 383–396. Springer (2008)

  14. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward chaining in the inverse method. J. Autom. Reason. 40(2–3), 133–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chihani, Z.: Certification of first-order proofs in classical and intuitionistic logics. Ph.D. thesis, Ecole Polytechnique (2015)

  16. Chihani, Z., Libal, T., Reis, G.: The proof certifier checkers. In: Nivelle, H.D. (ed.) Proceedings of the 24th Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), LNCS 9323, pp. 201–210. Springer (2015)

  17. Chihani, Z., Miller, D.: Proof certificates for equality reasoning. In: Benevides, M., Thiemann, R. (eds.) Post-proceedings of LSFA 2015: 10th Workshop on Logical and Semantic Frameworks, with Applications. Natal, Brazil, ENTCS 18612 (2016)

  18. Chihani, Z., Miller, D., Renaud, F.: Checking foundational proof certificates for first-order logic (extended abstract). In: Blanchette, J.C., Urban, J. (eds.) Third International Workshop on Proof Exchange for Theorem Proving (PxTP 2013), volume 14 of EPiC Series, pp. 58–66. EasyChair (2013)

  19. Chihani, Z., Miller, D., Renaud, F.: Foundational proof certificates in first-order logic. In: Bonacina, M.P. (ed.) CADE 24: Conference on Automated Deduction 2013, LNAI 7898, pp. 162–177 (2013)

  20. Chihani, Z., Miller, D., Renaud, F.: Supporting \(\lambda \)Prolog code. http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fpc-support.tar (2016)

  21. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956)

    Article  MATH  Google Scholar 

  22. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-Pi-calculus modulo. In: Rocca, S.R.D. (ed.) Proceedings of the Typed Lambda Calculi and Applications, 8th International Conference, TLCA 2007, Paris, France, 26–28 June 2007, LNCS 4583, pp. 102–117. Springer (2007)

  25. Danos, V., Joinet, J.-B., Schellinx, H.: LKT and LKQ: sequent calculi for second order logic based upon dual linear decompositions of classical implication. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222, pp. 211–224. Cambridge University Press, Cambridge (1995)

    Chapter  Google Scholar 

  26. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with an application to the Church–Rosser theorem. Indag. Math. 34(5), 381–392 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Delande, O., Miller, D., Saurin, A.: Proof and refutation in MALL as a game. Ann. Pure Appl. Log. 161(5), 654–672 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dowek, G.: Skolemization in simple type theory: the logical and the theoretical points of view. In: Reasoning in Simple Type Theory: Festschrift in Honor of Peter B. Andrews on His 70th Birthday, number 17 in Studies in Logic, pp. 244–255. College Publications (2008)

  29. Dowek, G., Hardin, T., Kirchner, C.: HOL-\(\lambda \sigma \) an intentional first-order expression of higher-order logic. Math. Struct. Comput. Sci. 11(1), 1–25 (2001)

    Article  MathSciNet  Google Scholar 

  30. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reason. 31(1), 31–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dunchev, C., Guidi, F., Coen, C.S., Tassi, E.: ELPI: fast, embeddable, \(\lambda \)Prolog interpreter. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) Proceedings of the Logic for Programming, Artificial Intelligence, and Reasoning—20th International Conference, LPAR-20 2015, Suva, Fiji, 24–28 November 2015, pp. 460–468 (2015)

  32. Dyckhoff, R., Lengrand, S.: Call-by-value \(\lambda \)-calculus and LJQ. J. Log. Comput. 17(6), 1109–1134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Felty, A.: Transforming specifications in a dependent-type lambda calculus to specifications in an intuitionistic logic. In: Huet, G., Plotkin, G.D. (eds.) Logical Frameworks. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  34. Felty, A.: Encoding the calculus of constructions in a higher-order logic. In: Vardi, M. (ed.) 8th Symposium on Logic in Computer Science, pp. 233–244. IEEE (1993)

  35. Felty, A.: Implementing tactics and tacticals in a higher-order logic programming language. J. Autom. Reason. 11(1), 43–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness + automation + soundness: towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS: Tools and Algorithms for the Construction and Analysis of Systems, 12th International Conference, LNCS 3920, pp. 167–181. Springer (2006)

  37. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper & Row, New York (1986)

    MATH  Google Scholar 

  38. Gelder, A.V.: Producing and verifying extremely large propositional refutations: have your cake and eat it too. Ann. Math. Artif. Intell. 65(4), 329–372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1935)

    Google Scholar 

  40. Gentzen, G.: Die widerspruchfreiheit der reinen zahlentheorie. Math. Ann. 112, 493–565 (1936). Reprinted in English translation as “The consistency of Elementary Number Theory” in The collected papers of Gerhard Gentzen, M. E. Szabo, ed

  41. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Girard, J.-Y.: A new constructive logic: classical logic. Math. Struct. Comp. Sci. 1, 255–296 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  44. Gödel, K.: Zur intuitionistischen arithmetik und zahlentheorie. Ergeb. Eines Math. Kolloqu. 34–38 (1932). English translation in The Undecidable (M. Davis, ed.) 75–81 (1965)

  45. Gödel, K.: Eine interpretation des intuitionistischen aussagenkalkuls. Ergeb. Eines Math. Kolloqu. 4, 39–40 (1933). Available in “Kurt Gödel: Collected Works. Volume 1” edited by S. Feferman and et al

  46. Gordon, M.: From LCF to HOL: a short history. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 169–186. MIT Press, Cambridge (2000)

    Google Scholar 

  47. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Computation, LNCS 78. Springer, New York (1979)

    Book  MATH  Google Scholar 

  48. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1), 143–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Heath, Q., Miller, D.: A framework for proof certificates in finite state exploration. In: Kaliszyk, C., Paskevich, A. (eds.) Proceedings of the Fourth Workshop on Proof eXchange for Theorem Proving, number 186 in Electronic Proceedings in Theoretical Computer Science, pp. 11–26. Open Publishing Association (2015)

  50. Herbelin, H.: Séquents qu’on calcule: de l’interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. Ph.D. thesis, Université Paris 7 (1995)

  51. Hodges, W.: Logic and games. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2013)

    Google Scholar 

  52. Honsell, F., Lenisa, M., Liquori, L., Maksimovic, P., Scagnetto, I.: LFP: a logical framework with external predicates. In: Chlipala, A., Schürmann, C. (eds.) LFMTP 2012: Proceedings of the Seventh International Workshop on Logical Frameworks and Meta-Languages, Theory and Practice, pp. 13–22. ACM, New York (2012)

  53. Howe, J.M.: Proof search issues in some non-classical logics. Ph.D. thesis, University of St Andrews (1998). Available as University of St Andrews Research Report CS/99/1

  54. Hughes, D.J.D.: Proofs without syntax. Ann. Math. 143(3), 1065–1076 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) The Third International Symposium on NASA Formal Methods, LNCS 6617, pp. 177–191 (2011)

  56. Johnson, S.C.: Yacc: Yet Another Compiler–Compiler, vol. 32. Bell Laboratories, Murray Hill (1975)

    Google Scholar 

  57. Kahn, G.: Natural semantics. In: Brandenburg, F.-J., Vidal-Naquet, G., Wirsing, M. (eds.) Proceedings of the Symposium on Theoretical Aspects of Computer Science, LNCS 247, pp. 22–39. Springer (1987)

  58. Kolmogorov, A .N.: On the principle of the excluded middle. Mat. Sb. 32, 646–667 (1925). English translation by Jean van Heijenoort in From Frege to Gödel

    Google Scholar 

  59. Laurent, O.: Etude de la polarisation en logique. Ph.D. thesis, Université Aix-Marseille II (2002)

  60. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theoret. Comput. Sci. 410(46), 4747–4768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. Liang, C., Miller, D.: A focused approach to combining logics. Ann. Pure Appl. Log. 162(9), 679–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lorenzen, P.: Ein dialogisches konstruktivitätskriterium. In: Infinitistic Methods: Proceedings of the Symposium on the Foundations of Mathematics, pp. 193–200. PWN (1961)

  63. Miller, D.: A compact representation of proofs. Stud. Log. 46(4), 347–370 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  64. Miller, D.: Communicating and trusting proofs: the case for broad spectrum proof certificates. In: Schroeder-Heister, P., Hodges, W., Heinzmann, G., Bour, P.E. (eds.) Logic, Methodology, and Philosophy of Science. Proceedings of the Fourteenth International Congress, pp. 323–342. College Publications (2014)

  65. Miller, D.: Proof checking and logic programming. In: Falaschi, M. (ed.) Logic-Based Program Synthesis and Transformation (LOPSTR), LNCS 9527, pp. 3–17. Springer, New York (2015)

    Chapter  Google Scholar 

  66. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  67. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Log. 51, 125–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  68. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007: Computer Science Logic, LNCS 4646, pp. 405–419. Springer, New York (2007)

    Google Scholar 

  69. Miller, D., Volpe, M.: Focused labeled proof systems for modal logic. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), LNCS 9450, pp. 266–280. Springer (2015)

  70. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised). The MIT Press, Cambridge (1997)

    Google Scholar 

  71. Nadathur, G., Mitchell, D.J.: System description: Teyjus—a compiler and abstract machine based implementation of \(\lambda \)Prolog. In: Ganzinger, H. (ed.) 16th Conference on Automated Deduction (CADE), LNAI 1632, pp. 287–291. Springer, Trento (1999)

  72. Necula, G.C., Rahul, S.P.: Oracle-based checking of untrusted software. In: Hankin, C., Schmidt, D. (eds.) 28th ACM Symposium on Principles of Programming Languages, pp. 142–154 (2001)

  73. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS 2283. Springer, New York (2002)

    MATH  Google Scholar 

  74. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason. 5, 363–397 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  75. Pereira, F.C.N., Shieber, S.M.: Prolog and Natural-Language Analysis, vol. 10. CLSI, Stanford (1987)

    MATH  Google Scholar 

  76. Pfenning, F., Schürmann, C.: System description: Twelf—a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) 16th Conference on Automated Deduction (CADE), LNAI 1632, pp. 202–206. Springer, Trento (1999)

  77. Plotkin, G.D.: A Structural Approach to Operational Semantics. DAIMI FN-19. Aarhus University, Aarhus (1981)

    Google Scholar 

  78. Plotkin, G.D.: The origins of structural operational semantics. J. Log. Algebraic Program. 60, 3–15 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  79. Prawitz, D.: Natural Deduction. Almqvist & Wiksell, Uppsala (1965)

    MATH  Google Scholar 

  80. Qi, X., Gacek, A., Holte, S., Nadathur, G., Snow, Z.: The Teyjus system—version 2. http://teyjus.cs.umn.edu/ (2015)

  81. Rabe, F.: The future of logic: foundation-independence. Log. Universalis. 10(1), 1–20 (2016)

  82. Saillard, R.: Towards explicit rewrite rules in the \(\lambda {\varPi }\)-calculus modulo. In: Schulz, S., Sutcliffe, G., Konev, B. (eds.) IWIL-10th International Workshop on the Implementation of Logics, (2013)

  83. Schwichtenberg, H.: Minlog. In: Wiedijk, F. (ed.) The Seventeen Provers of the World, LNCS 3600, pp. 151–157. Springer, New York (2006)

    Chapter  Google Scholar 

  84. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of deductive parsing. J. Log. Program. 24(1–2), 3–36 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  85. Slaney, J.: Solution to a problem of Ono and Komori. J. Philos. Log. 18, 103–111 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  86. Snow, Z., Baelde, D., Nadathur, G.: A meta-programming approach to realizing dependently typed logic programming. In: Kutsia, T., Schreiner, W., Fernández, M. (eds.) ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), pp. 187–198 (2010)

  87. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge (1977)

    MATH  Google Scholar 

  88. Stump, A.: Proof checking technology for satisfiability modulo theories. Electron. Notes Theor. Comput. Sci. 228, 121–133 (2009)

  89. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking using a logical framework. Form. Methods Syst. Des. 42(1), 91–118 (2013)

    Article  MATH  Google Scholar 

  90. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  91. Wetzler, N., Heule, M.J.H., Hunt, J.W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing SAT 2014, LNCS 8561, pp. 422–429. Springer, New York (2014)

    Google Scholar 

Download references

Acknowledgments

This paper is an extension of the conference paper [19] by the authors. This work has been funded by the ERC Advanced Grant ProofCert. We thank Roberto Blanco, Danko Ilik, Matthias Puech, and anonymous reviewers for their comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihani, Z., Miller, D. & Renaud, F. A Semantic Framework for Proof Evidence. J Autom Reasoning 59, 287–330 (2017). https://doi.org/10.1007/s10817-016-9380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-016-9380-6

Keywords