Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Permuting input for more effective sampling of 3D conformer space

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

SMILES strings and other classic 2D structural formats offer a convenient way to represent molecules as a simplistic connection table, with the inherent advantages of ease of handling and storage. In the context of virtual screening, chemical databases to be screened are often initially represented by canonicalised SMILES strings that can be filtered and pre-processed in a number of ways, resulting in molecules that occupy similar regions of chemical space to active compounds of a therapeutic target. A wide variety of software exists to convert molecules into SMILES format, namely, Mol2smi (Daylight Inc.), MOE (Chemical Computing Group) and Babel (Openeye Scientific Software). Depending on the algorithm employed, the atoms of a SMILES string defining a molecule can be ordered differently. Upon conversion to 3D coordinates they result in the production of ostensibly the same molecule.

In this work we show how different permutations of a SMILES string can affect conformer generation, affecting reliability and repeatability of the results. Furthermore, we propose a novel procedure for the generation of conformers, taking advantage of the permutation of the input strings—both SMILES and other 2D formats, leading to more effective sampling of conformation space in output, and also implementing fingerprint and principal component analyses step to post process and visualise the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou T, Xu X (2004) Curr Pharm Des 10(9):1011

    Article  CAS  Google Scholar 

  2. Liao C, Liu B, Shi L, Zhou J, Lu XP (2005) Eur J Med Chem 40(7):632

    Article  CAS  Google Scholar 

  3. Bringmann BKA (2004) Frequent SMILES. Lernen, Wissensentdeckung und Adaptivität, Workshop GI Fachgruppe Maschinelles Lernen, part of LWA 2004

  4. Weininger D (1988) J Chem Inf Comput 28:31

    Article  CAS  Google Scholar 

  5. Knox AJS, Meegan MJ, Carta G, Lloyd DG (2005) J Chem Inf Model 45(6):1908–19

    Google Scholar 

  6. Vigers GP, Rizzi JP (2004) J Med Chem 47(1):80–89

    Article  CAS  Google Scholar 

  7. Kauppi B, Jakob C, Farnegardh M, Yang J, Ahola H, Alarcon M, Calles K, Engstrom O, Harlan J, Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist M (2003) J Biol Chem 278(25):22748

    Article  CAS  Google Scholar 

  8. Cronet P, Petersen JF, Folmer R, Blomberg N, Sjoblom K, Karlsson U, Lindstedt EL, Bamberg K (2001) Structure (Camb) 9(8):699

    Article  CAS  Google Scholar 

  9. Daylight Chemical Informations Systems Inc. (URL: http://www.daylight.com)

  10. Molecular Operating Environment (MOE), developed and distributed by Chemical Computing Group (http://wwwchemcompcom)

  11. Babel v2.0A3, distributed by Openeye Scientific Software

  12. Chemsketch v8.17, www.acdlabs.com

  13. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261(3):470

    Article  CAS  Google Scholar 

  14. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267(3):727

    Article  CAS  Google Scholar 

  15. CORINA 3.6, distributed by Molecular Networks GmbH

  16. Cambridge Structural Database, http://www.ccdc.cam.ac.uk/

  17. OMEGA 1.8.1, distributed by Openeye Scientific Software

  18. Catalyst v4.9.1, www.accelrys.com

  19. RUBICON, distributed by Daylight Chemical Informations Systems Inc

  20. Shanno DF, Phua KH (1980) ACM Trans Math Software 6:618

    Google Scholar 

  21. Bostrom J, Greenwood JR, Gottfries J (2003) J Mol Graph Model 21(5):449

    Article  CAS  Google Scholar 

  22. Bostrom J (2001) J Comput Aided Mol Des 15(12):1137

    Article  CAS  Google Scholar 

  23. Ivanciuc O (2003) In: Gasteiger J (ed) Handbook of chemoinformatic , vol. 1. p 103

  24. Kudo Y, Sasaki S (1974) J Chem Document 14(4):200

    Article  CAS  Google Scholar 

  25. Babel 1.100.2, Distributed by Openeye Scientific Software

  26. oechem, RMSD, Distributed by Openeye Scientific Software

Download references

Acknowledgement

This work was supported through funding from Science Foundation Ireland and the Irish Health Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Lloyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carta, G., Onnis, V., Knox, A.J.S. et al. Permuting input for more effective sampling of 3D conformer space. J Comput Aided Mol Des 20, 179–190 (2006). https://doi.org/10.1007/s10822-006-9044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9044-4

Keywords