Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Numerical study on the field-emission properties of a graphene–C60 composite

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new model of a graphene–C60 composite is constructed to explore its electronic structure and field-emission characteristics. We investigate the structural stability, energy levels, local electron density distribution, work function, ionization potential, and Mulliken, Hirshfeld, and electrostatic potential fitting (ESP) charges of this composite by using first-principles methods. The results indicate that the electronic structure of the composite can be modulated obviously by applying an external electric field. The energy gap decreases as the electric field is increased, and the change in the local electron density distribution plays the role of a tip emission point. We find that the binding energy increases as the electric field is increased, which confirms that the assembly of graphene and C60 directly improves the stability of the compound and results in excellent semiconducting properties. With the increasing electric field, we also find that the work functions and ionization potentials of this composite decrease linearly, and the Mulliken, Hirshfeld and ESP charge move efficiently. All of those and the change of energy gap and the local electron density distribution show the improvement of graphene–C60 composite’s field emission properties. We conclude that the graphene–C60 composite may be a promising candidate for use in field-emission devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  2. Watcharotone, S., Ruoff, R.S., Read, F.H.: Possibilities for graphene for field emission: modeling studies using the BEM. Phys. Procedia 1(1), 71–75 (2008)

    Article  Google Scholar 

  3. Eda, G., Unalan, H.E., Rupesinghe, N., Amaratunga, G., Chhowalla, M.: Field emission from graphene based composite thin films. Appl. Phys. Lett. 93(23), 233502 (2008)

    Article  Google Scholar 

  4. Malesevic, A., Kemps, R., Vanhulsel, A., Chowdhury, M.P., Volodin, A., Van Haesendonck, C.: Field emission from vertically aligned few-layer graphene. J. Appl. Phys. 104(8), 084301 (2008)

    Article  Google Scholar 

  5. Wu, Z.S., Pei, S.F., Ren, W.C., Tang, D.M., Gao, L.B., Liu, B.L., Li, F., Liu, C., Cheng, H.M.: Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21(17), 1756–1760 (2009)

    Article  Google Scholar 

  6. Srivastava, S.K., Shukla, A.K., Vankar, V.D., Kumar, V.: Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films 492(1), 124–130 (2005)

    Article  Google Scholar 

  7. Chen, M.Y., Yeh, C.M., Syu, J.S., Hwang, J., Kou, C.S.: Field emission from carbon nanosheets on pyramidal Si(100). Nanotechnology 18(18), 185706 (2007)

    Article  Google Scholar 

  8. Zheng, W.T., Ho, Y.M., Tian, H.W., Wen, M., Qi, J.L., Li, Y.A.: Field emission from a composite of graphene sheets and ZnO nanowires. J. Phys. Chem. C 113(21), 9164–9168 (2009)

    Article  Google Scholar 

  9. Feng, M., Zhao, J., Petek, H.: Atomlike, hollow-core–bound molecular orbitals of C60. Science 320(5874), 359–362 (2008)

    Article  Google Scholar 

  10. Zhu, H., Masarapu, C., Wei, J., Wang, K., Wu, D., Wei, B.: Temperature dependence of field emission of single-walled carbon nanotube thin films. Phys. E 41(7), 1277–1280 (2009)

    Article  Google Scholar 

  11. Deng, J., Zheng, R., Yang, Y., Zhao, Y., Chen, G.: Excellent field emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition. Carbon 50(12), 4732–4737 (2012)

    Article  Google Scholar 

  12. Qiao, L., Zheng, W.T., Xu, H., Zhang, L., Jiang, Q.: Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study. J. Chem. Phys. 126(16), 164702 (2007)

    Article  Google Scholar 

  13. Gong, J., Yang, H., Yang, P.: Investigation on field emission properties of N-doped graphene-carbon nanotube composites. Compos. B Eng. 75, 250–255 (2015)

    Article  Google Scholar 

  14. Nasibulin, A.G., Pikhitsa, P.V., Jiang, H., Brown, D.P., Krasheninnikov, A.V., Anisimov, A.S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G., Hassanien, A., Shandakov, S.D., Lolli, G., Resasco, D.E., Choi, M., Tománek, D., Kauppinen, E.I.: A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)

    Article  Google Scholar 

  15. Wu, X., Wang, Y., Yang, P.: The field emission properties from the pristine/B-doped graphene–C70 composite. Phys. Lett. A 381(24), 2004–2009 (2017)

    Article  Google Scholar 

  16. Wu, X., Zeng, X.C.: Periodic graphene nanobuds. Nano Lett. 9(1), 250–256 (2008)

    Article  Google Scholar 

  17. Nasibulin, A.G., Anisimov, A.S., Pikhitsa, P.V., Jiang, H., Brown, D.P., Choi, M., Kauppinen, E.I.: Investigations of NanoBud formation. Chem. Phys. Lett. 446(1), 109–114 (2007)

    Article  Google Scholar 

  18. Kim, C., Kim, B., Lee, S.M., Jo, C., Lee, Y.H.: Electronic structures of capped carbon nanotubes under electric fields. Phys. Rev. B 65(16), 165418–165425 (2002)

    Article  Google Scholar 

  19. Louie, S.G., Froyen, S., Cohen, M.L.: Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 26(4), 1738 (1982)

    Article  Google Scholar 

  20. Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000)

    Article  Google Scholar 

  21. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  22. Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990)

    Article  Google Scholar 

  23. Gong, J., Tang, Y., Yang, P.: Investigation on field emission properties of graphdiyne–BN composite. J. Mol. Struct. 1064, 32–36 (2014)

    Article  Google Scholar 

  24. Gong, J., Yang, P.: Investigation on field emission properties of graphene–carbon nanotube composites. RSC Adv. 4(38), 19622–19628 (2014)

    Article  Google Scholar 

  25. Kim, C., Kim, B., Lee, S.M., Jo, C., Lee, Y.H.: Effect of electric field on the electronic structures of carbon nanotubes. Appl. Phys. Lett. 79(8), 1187–1189 (2001)

    Article  Google Scholar 

  26. Zhang, S., Zhang, Y., Huang, S., Liu, H., Wang, P., Tian, H.: First-principles study of field emission properties of graphene–ZnO nanocomposite. J. Phys. Chem. C 114(45), 19284–19288 (2010)

    Article  Google Scholar 

  27. Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O.: Field emission from carbon nanotubes: the first five years. Solid State Electron. 45(6), 893–914 (2001)

    Article  Google Scholar 

  28. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928)

    Article  MATH  Google Scholar 

  29. Qiao, L., Zheng, W.T., Wen, Q.B., Jiang, Q.: First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes. Nanotechnology 18(15), 155707 (2007)

    Article  Google Scholar 

  30. Wang, C., Qiao, L., Qu, C., Zheng, W., Jiang, Q.: First-principles calculations on the emission properties of pristine and N-doped carbon nanotubes. J. Phys. Chem. C 113(3), 812–818 (2008)

    Article  Google Scholar 

  31. Akdim, B., Duan, X., Pachter, R.: The effects of O2 adsorbates on field emission properties of single-wall carbon nanotubes: a density functional theory study. Nano Lett. 3(9), 1209–1214 (2003)

    Article  Google Scholar 

  32. Maiti, A., Andzelm, J., Tanpipat, N., von Allmen, P.: Effect of adsorbates on field emission from carbon nanotubes. Phys. Rev. Lett. 87(15), 155502 (2001)

    Article  Google Scholar 

  33. Chan, K.T., Neaton, J.B., Cohen, M.L.: First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77(23), 235430 (2008)

    Article  Google Scholar 

  34. Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., Van den Brink, J., Kelly, P.J.: Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008)

    Article  Google Scholar 

  35. Van Damme, S., Bultinck, P., Fias, S.: Electrostatic potentials from self-consistent Hirshfeld atomic charges. J. Chem. Theory Comput. 5(2), 334–340 (2009)

    Article  Google Scholar 

  36. Zhang, H., Xu, Z.P., Lu, G.Q., Smith, S.C.: Computer modeling study for intercalation of drug heparin into layered double hydroxide. J. Phys. Chem. C 114(29), 12618–12629 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Six Talent Peaks Project in Jiangsu Province (JXQC-006), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_2225), and the High-Performance Computing Platform of Jiangsu University during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Yang, Y., Yuan, X. et al. Numerical study on the field-emission properties of a graphene–C60 composite. J Comput Electron 18, 130–137 (2019). https://doi.org/10.1007/s10825-018-1276-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1276-8

Keywords