Abstract
A new model of a graphene–C60 composite is constructed to explore its electronic structure and field-emission characteristics. We investigate the structural stability, energy levels, local electron density distribution, work function, ionization potential, and Mulliken, Hirshfeld, and electrostatic potential fitting (ESP) charges of this composite by using first-principles methods. The results indicate that the electronic structure of the composite can be modulated obviously by applying an external electric field. The energy gap decreases as the electric field is increased, and the change in the local electron density distribution plays the role of a tip emission point. We find that the binding energy increases as the electric field is increased, which confirms that the assembly of graphene and C60 directly improves the stability of the compound and results in excellent semiconducting properties. With the increasing electric field, we also find that the work functions and ionization potentials of this composite decrease linearly, and the Mulliken, Hirshfeld and ESP charge move efficiently. All of those and the change of energy gap and the local electron density distribution show the improvement of graphene–C60 composite’s field emission properties. We conclude that the graphene–C60 composite may be a promising candidate for use in field-emission devices.
Similar content being viewed by others
References
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)
Watcharotone, S., Ruoff, R.S., Read, F.H.: Possibilities for graphene for field emission: modeling studies using the BEM. Phys. Procedia 1(1), 71–75 (2008)
Eda, G., Unalan, H.E., Rupesinghe, N., Amaratunga, G., Chhowalla, M.: Field emission from graphene based composite thin films. Appl. Phys. Lett. 93(23), 233502 (2008)
Malesevic, A., Kemps, R., Vanhulsel, A., Chowdhury, M.P., Volodin, A., Van Haesendonck, C.: Field emission from vertically aligned few-layer graphene. J. Appl. Phys. 104(8), 084301 (2008)
Wu, Z.S., Pei, S.F., Ren, W.C., Tang, D.M., Gao, L.B., Liu, B.L., Li, F., Liu, C., Cheng, H.M.: Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21(17), 1756–1760 (2009)
Srivastava, S.K., Shukla, A.K., Vankar, V.D., Kumar, V.: Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films 492(1), 124–130 (2005)
Chen, M.Y., Yeh, C.M., Syu, J.S., Hwang, J., Kou, C.S.: Field emission from carbon nanosheets on pyramidal Si(100). Nanotechnology 18(18), 185706 (2007)
Zheng, W.T., Ho, Y.M., Tian, H.W., Wen, M., Qi, J.L., Li, Y.A.: Field emission from a composite of graphene sheets and ZnO nanowires. J. Phys. Chem. C 113(21), 9164–9168 (2009)
Feng, M., Zhao, J., Petek, H.: Atomlike, hollow-core–bound molecular orbitals of C60. Science 320(5874), 359–362 (2008)
Zhu, H., Masarapu, C., Wei, J., Wang, K., Wu, D., Wei, B.: Temperature dependence of field emission of single-walled carbon nanotube thin films. Phys. E 41(7), 1277–1280 (2009)
Deng, J., Zheng, R., Yang, Y., Zhao, Y., Chen, G.: Excellent field emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition. Carbon 50(12), 4732–4737 (2012)
Qiao, L., Zheng, W.T., Xu, H., Zhang, L., Jiang, Q.: Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study. J. Chem. Phys. 126(16), 164702 (2007)
Gong, J., Yang, H., Yang, P.: Investigation on field emission properties of N-doped graphene-carbon nanotube composites. Compos. B Eng. 75, 250–255 (2015)
Nasibulin, A.G., Pikhitsa, P.V., Jiang, H., Brown, D.P., Krasheninnikov, A.V., Anisimov, A.S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G., Hassanien, A., Shandakov, S.D., Lolli, G., Resasco, D.E., Choi, M., Tománek, D., Kauppinen, E.I.: A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)
Wu, X., Wang, Y., Yang, P.: The field emission properties from the pristine/B-doped graphene–C70 composite. Phys. Lett. A 381(24), 2004–2009 (2017)
Wu, X., Zeng, X.C.: Periodic graphene nanobuds. Nano Lett. 9(1), 250–256 (2008)
Nasibulin, A.G., Anisimov, A.S., Pikhitsa, P.V., Jiang, H., Brown, D.P., Choi, M., Kauppinen, E.I.: Investigations of NanoBud formation. Chem. Phys. Lett. 446(1), 109–114 (2007)
Kim, C., Kim, B., Lee, S.M., Jo, C., Lee, Y.H.: Electronic structures of capped carbon nanotubes under electric fields. Phys. Rev. B 65(16), 165418–165425 (2002)
Louie, S.G., Froyen, S., Cohen, M.L.: Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 26(4), 1738 (1982)
Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000)
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)
Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990)
Gong, J., Tang, Y., Yang, P.: Investigation on field emission properties of graphdiyne–BN composite. J. Mol. Struct. 1064, 32–36 (2014)
Gong, J., Yang, P.: Investigation on field emission properties of graphene–carbon nanotube composites. RSC Adv. 4(38), 19622–19628 (2014)
Kim, C., Kim, B., Lee, S.M., Jo, C., Lee, Y.H.: Effect of electric field on the electronic structures of carbon nanotubes. Appl. Phys. Lett. 79(8), 1187–1189 (2001)
Zhang, S., Zhang, Y., Huang, S., Liu, H., Wang, P., Tian, H.: First-principles study of field emission properties of graphene–ZnO nanocomposite. J. Phys. Chem. C 114(45), 19284–19288 (2010)
Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O.: Field emission from carbon nanotubes: the first five years. Solid State Electron. 45(6), 893–914 (2001)
Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928)
Qiao, L., Zheng, W.T., Wen, Q.B., Jiang, Q.: First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes. Nanotechnology 18(15), 155707 (2007)
Wang, C., Qiao, L., Qu, C., Zheng, W., Jiang, Q.: First-principles calculations on the emission properties of pristine and N-doped carbon nanotubes. J. Phys. Chem. C 113(3), 812–818 (2008)
Akdim, B., Duan, X., Pachter, R.: The effects of O2 adsorbates on field emission properties of single-wall carbon nanotubes: a density functional theory study. Nano Lett. 3(9), 1209–1214 (2003)
Maiti, A., Andzelm, J., Tanpipat, N., von Allmen, P.: Effect of adsorbates on field emission from carbon nanotubes. Phys. Rev. Lett. 87(15), 155502 (2001)
Chan, K.T., Neaton, J.B., Cohen, M.L.: First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77(23), 235430 (2008)
Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., Van den Brink, J., Kelly, P.J.: Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008)
Van Damme, S., Bultinck, P., Fias, S.: Electrostatic potentials from self-consistent Hirshfeld atomic charges. J. Chem. Theory Comput. 5(2), 334–340 (2009)
Zhang, H., Xu, Z.P., Lu, G.Q., Smith, S.C.: Computer modeling study for intercalation of drug heparin into layered double hydroxide. J. Phys. Chem. C 114(29), 12618–12629 (2010)
Acknowledgements
The authors acknowledge support from the Six Talent Peaks Project in Jiangsu Province (JXQC-006), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_2225), and the High-Performance Computing Platform of Jiangsu University during the course of this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, B., Yang, Y., Yuan, X. et al. Numerical study on the field-emission properties of a graphene–C60 composite. J Comput Electron 18, 130–137 (2019). https://doi.org/10.1007/s10825-018-1276-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-018-1276-8