Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Optimization of the area efficiency and robustness of a QCA-based reversible full adder

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Recently, quantum dot cellular automata (QCAs) have evolved as the most promising candidate to overcome the fundamental nanoscale limitations of present complementary metal–oxide–semiconductor (CMOS) technology. Owing to their quasiadiabatic switching, QCAs have huge potential for the design of THz-frequency logic circuits and ultralow-power digital circuits with extremely high device density. The aim of the work presented herein is to maximize the benefits of a QCA-based circuit design by deploying reversible computing logic. A highly efficient reversible QCA-based full adder is proposed by using a three-input and five-input majority gate architecture. The proposed design demonstrates significant improvements in circuit complexity, area efficiency, and quantum cost while retaining performance in terms of latency and area usage. Coplanar crossovers are properly realized using 180° clock zones. The performance of the proposed design surpasses that of recent literature designs, with a 25% reduction in the circuit complexity, a 28% saving in the total area, a 24.57% decrease in the cell area, and an approximately 1/4 reduction in the quantum cost. To verify the feasibility of the proposed design, its thermal robustness is analyzed and hazard analysis is also performed. The proposed full adder is further employed to realize reversible ripple-carry adders (RCAs) of variable size. The proposed RCAs also show significant improvements in terms of the mentioned performance parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  2. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. IEEE Proc. 85(4), 541–557 (1997)

    Article  Google Scholar 

  3. Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)

    Article  Google Scholar 

  4. Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1201–1209 (2013)

    Article  Google Scholar 

  5. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  6. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  7. Abdullah-Al-Shafi, M., Shifatul, M., Newaz, A.: A review on reversible logic gates and its QCA implementation. Int. J. Comput. Appl. 128(2), 27–34 (2015)

    Google Scholar 

  8. Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Electron. Test. 24(1–3), 297–311 (2008)

    Article  Google Scholar 

  9. Shah, N.A., Khanday, F.A., Iqbal, J.: Quantum-dot cellular automata (QCA) design of multi-function reversible logic gate. In: Communications in Information Science and Management Engineering, vol. 2, no. 4 (2012)

  10. Hashemi, S., Navi, K.: Reversible multiplexer design in quantum-dot cellular automata. Quantum Matter 3(6), 523–528 (2014)

    Article  Google Scholar 

  11. Kianpour, M., Sabbaghi-Nadooshan, R.: Novel 8-bit reversible full adder/subtractor using a QCA reversible gate. J. Comput. Electron. 16(2), 459–472 (2017)

    Article  Google Scholar 

  12. Taherkhani, E., Moaiyeri, M.H., Angizi, S.: Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik 142, 557–563 (2017)

    Article  Google Scholar 

  13. Hashemi, S., Navi, K.: Designing quantum-dot cellular automata circuits using a robust one layer crossover scheme. J. Eng. 2014(3), 93–97 (2014)

    Google Scholar 

  14. Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(1), 176–183 (2007)

    Article  Google Scholar 

  15. Kim, K., Wu, K., K., Karri, R., R.: 2005, Towards designing robust QCA architectures in the presence of sneak noise paths. In: Proceedings of the IEEE Computer Society conference on Design, Automation and Test in Europe, vol. 2, pp. 1214–1219 (2005)

  16. Hänninen, I., Takala, J.: Binary adders on quantum-dot cellular automata. J. Signal Process. Syst. 58(1), 87–103 (2010)

    Article  Google Scholar 

  17. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  18. Devadoss, R., Paul, K., Balakrishnan, M.: Coplanar QCA crossovers. Electron. Lett. 45(24), 1234–1235 (2009)

    Article  Google Scholar 

  19. Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12(2), 215–224 (2013)

    Article  Google Scholar 

  20. Shin, S.H., Jeon, J.C., Yoo, K.Y.: Wire-crossing technique on quantum-dot cellular automata. In: The 2nd International Conference on Next Generation Computer and Information Technology (NGCIT2013), vol. 27, pp. 52–57 (2013)

  21. Toffoli, T.: Reversible computing. In: International Colloquium on Automata, Languages, and Programming, pp. 632–644. Springer, Berlin (1980)

  22. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266 (1985)

    Article  MathSciNet  Google Scholar 

  23. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  24. Thapliyal, H., Srinivas, M.B., Arabnia, H.R.: Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp. 165–181 (2005)

  25. Kunalan, D., Cheong, C.L., Chau, C.F., Ghazali, A.B.: Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). In: IEEE International Conference on Semiconductor Electronics (ICSE2014), pp. 60–63 (2014)

  26. Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014)

    Article  MathSciNet  Google Scholar 

  27. Sasamal, T.N., Singh, A.K., Mohan, A.: Design of cost-efficient QCA reversible circuits via clock-zone-based crossover. Int. J. Theor. Phys. 57(10), 3127–3140 (2018)

    Article  Google Scholar 

  28. Hashemi, S., Azghadi, M.R., Navi, K.: Design and analysis of efficient QCA reversible adders. J. Supercomput. 75(4), 1–20 (2018)

    Google Scholar 

  29. Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders (2012). arXiv preprint. arXiv:1204.2048

  30. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  31. Babu, H.M.H., Islam, M.R., Chowdhury, A.R., Chowdhury, S.M.A.: On the realization of reversible full-adder circuit. In: International Conference on Computer and Information Technology, Dhaka, Bangladesh, vol. 2, pp. 880–883 (2003)

  32. Islam, S., Islam, M.R.: Minimization of reversible adder circuits. Asian J. Inf. Technol. 4(12), 1146–1151 (2005)

    MathSciNet  Google Scholar 

  33. Haghparast, M., Navi, K.: A novel reversible BCD adder for nanotechnology based systems. Am. J. Appl. Sci. 5(3), 282–288 (2008)

    Article  Google Scholar 

  34. AnanthaLakshmi, A.V., Sudha, G.F.: Design of a novel reversible full adder and reversible full subtractor. In: Advances in Computing and Information Technology, pp. 623–632. Springer, Berlin (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Singh, S. Optimization of the area efficiency and robustness of a QCA-based reversible full adder. J Comput Electron 18, 1478–1489 (2019). https://doi.org/10.1007/s10825-019-01369-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01369-5

Keywords