Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nanocomputing channel fidelity of QCA code converter circuits under thermal randomness

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The signal propagation and logical operations performed by the electrostatic interaction between the nanodots belonging to the quantum cellular automata (QCA) cells of different polarizations are influenced by the environmental noise like temperature fluctuations. The effect of thermal randomness on the computational fidelity of QCA-based 4-bit binary-to-Gray and binary-to-excess-3 code converters is studied in this article. The fidelity of computation of these digital circuits in the presence of noise is calculated by applying Shannon’s information-theoretic measures, and thus, the robustness of the quantum cellular automata circuits to thermal noise is estimated. Finally, the temperature range over which the semiconductor quantum cellular automata circuits yield reliable computation is indicated. The proposed converters have minimum number of clock zones and high device density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  2. Porod, W.: Quantum-dot devices and quantum-dot cellular automata. Int. J. Bifurc. Chaos 7, 2199–2218 (1997)

    Article  Google Scholar 

  3. Tougaw, P.D., Lent, C.S.: Logic devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  Google Scholar 

  4. Orlov, A.O., Amlani, I., Toth, G., Lent, C.S., Bernstein, G.H., Snider, G.L.: Experimental demonstration of a binary wire for quantum-dot cellular automata. Appl. Phys. Lett. 74, 2875–2877 (1999)

    Article  Google Scholar 

  5. Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S., Porod, W., Bernstein, G.H.: Experimental demonstration of electron switching in a quantum-dot cellular automata (QCA) cell. Superlattices Microstruct. 25, 273–278 (1999)

    Article  Google Scholar 

  6. Campos, C.A.T., Marciano, A.L., Vilela Neto, O.P., Torres, F.S.: USE: a universal, scalable and efficient clocking scheme for QCA. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 513–517 (2016)

    Article  Google Scholar 

  7. Pudi, V., Sridharan, K.: A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. Syst. 23, 2352–2356 (2015)

    Article  Google Scholar 

  8. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. (2016). https://doi.org/10.1007/s00542-016-3085-y

    Article  Google Scholar 

  9. Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)

    Article  Google Scholar 

  10. Sen, B., Dutta, M., Mukherjee, R., Nath, R.K., Sinha, A.P., Sikdar, B.K.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016)

    Article  Google Scholar 

  11. Das, K., De, D., De, M.: Realization of semiconductor ternary quantum dot cellular automata. IET Micro Nano Lett. 8, 258–263 (2013)

    Article  Google Scholar 

  12. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  13. Das, J.C., De, D.: Reversible comparator design using quantum dot-cellular automata. IETE J. Res. 62, 323–330 (2016)

    Article  Google Scholar 

  14. Roy, D., Maitra, S., Mukherjee, K., De, D.: Analysis of effect of temperature variation on computational faithfulness of a QCA XOR gate. Presented at International Conference on Electronics, Communication and Instrumentation (ICECI), Kolkata, India, pp. 1–4 (2014)

  15. K. Das, D. De, M. De, Re-Programmable Logic Array for Logic Design and Its Reliability Analysis in QCA, in Emerging Trends in Computing and Communication (ETCC), Lecture Notes in Electrical Engineering, Springer, 298 (2014) 341-352

  16. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13, 701–708 (2014)

    Article  Google Scholar 

  17. Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bitadder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80, 1404–1414 (2014)

    Article  Google Scholar 

  18. Tehrani, M.A., Safaei, F., Moaiyeri, M.H., Navi, K.: Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectron. J. 42, 913–922 (2011)

    Article  Google Scholar 

  19. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Angizi, S.A.S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  20. Perez-Martinez, F., Petersson, K.D., Farrer, I., Anderson, D., Jones, G.A.C., Ritchie, D.A., Smith, C.G.: Realization of a GaAs/AlGaAs-based quantum cellular automata cell. Microelectron. J. 39, 674–677 (2008)

    Article  Google Scholar 

  21. Macuccia, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekamb, G., Kern, D.P.: A QCA cell in silicon on insulator technology: theory and experiment. Superlattices Microstruct. 34, 205–211 (2003)

    Article  Google Scholar 

  22. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015)

    Article  Google Scholar 

  23. Vankamamidi, V., Ottavi, M., Lombardi, F.: A serial-memory by quantum-dot cellular automata. IEEE Trans. Comput. 57, 606–618 (2008)

    Article  MathSciNet  Google Scholar 

  24. Das, J.C., De, D.: Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess. Microsyst. 42, 10–23 (2016)

    Article  Google Scholar 

  25. Kassa, S.R., Nagaria, R.K.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15, 324–334 (2016)

    Article  Google Scholar 

  26. Das, J.C., De, D.: Quantum dot-cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inform. Technol. Electron. Eng. 17, 224–236 (2016)

    Article  Google Scholar 

  27. Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron. J. 43, 929–940 (2012)

    Article  Google Scholar 

  28. Du, H., Lv, H., Zhang, Y., Peng, F., Xie, G.: Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J. Comput. Electron. 15(4), 1484–1497 (2016)

    Article  Google Scholar 

  29. Arjmand, M.M., Soryani, M., Navi, K.: Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Dev. Syst. 7, 263–272 (2013)

    Article  Google Scholar 

  30. Sayedsalehi, S., Azghadi, M.R., Angizi, S., Navi, K.: Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf. Sci. 311, 86–101 (2015)

    Article  MathSciNet  Google Scholar 

  31. Fijani, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3, 27–37 (2001)

    Article  Google Scholar 

  32. Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39, 426–433 (2015)

    Article  Google Scholar 

  33. Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test. 25, 39–54 (2009)

    Article  Google Scholar 

  34. Sen, B., Dutta, M., Sikdar, B.K.: Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectron. J. 45, 239–248 (2014)

    Article  Google Scholar 

  35. Anderson, N.G., Maalouli, F., Mestancik, J.: Quantifying the computational efficacy of nanocomputing channels. Nano Commun. Netw. 3, 139–150 (2012)

    Article  Google Scholar 

  36. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DST FIST Project, WBUT, India, for providing with the grant for accomplishment of the project under File No. SR/FST/ETI-296/2011, and TEQIP II, WBUT, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadav Chandra Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, D., Das, J.C. Nanocomputing channel fidelity of QCA code converter circuits under thermal randomness. J Comput Electron 19, 419–434 (2020). https://doi.org/10.1007/s10825-019-01411-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01411-6

Keywords