Abstract
The signal propagation and logical operations performed by the electrostatic interaction between the nanodots belonging to the quantum cellular automata (QCA) cells of different polarizations are influenced by the environmental noise like temperature fluctuations. The effect of thermal randomness on the computational fidelity of QCA-based 4-bit binary-to-Gray and binary-to-excess-3 code converters is studied in this article. The fidelity of computation of these digital circuits in the presence of noise is calculated by applying Shannon’s information-theoretic measures, and thus, the robustness of the quantum cellular automata circuits to thermal noise is estimated. Finally, the temperature range over which the semiconductor quantum cellular automata circuits yield reliable computation is indicated. The proposed converters have minimum number of clock zones and high device density.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)
Porod, W.: Quantum-dot devices and quantum-dot cellular automata. Int. J. Bifurc. Chaos 7, 2199–2218 (1997)
Tougaw, P.D., Lent, C.S.: Logic devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)
Orlov, A.O., Amlani, I., Toth, G., Lent, C.S., Bernstein, G.H., Snider, G.L.: Experimental demonstration of a binary wire for quantum-dot cellular automata. Appl. Phys. Lett. 74, 2875–2877 (1999)
Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S., Porod, W., Bernstein, G.H.: Experimental demonstration of electron switching in a quantum-dot cellular automata (QCA) cell. Superlattices Microstruct. 25, 273–278 (1999)
Campos, C.A.T., Marciano, A.L., Vilela Neto, O.P., Torres, F.S.: USE: a universal, scalable and efficient clocking scheme for QCA. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 513–517 (2016)
Pudi, V., Sridharan, K.: A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. Syst. 23, 2352–2356 (2015)
Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. (2016). https://doi.org/10.1007/s00542-016-3085-y
Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)
Sen, B., Dutta, M., Mukherjee, R., Nath, R.K., Sinha, A.P., Sikdar, B.K.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016)
Das, K., De, D., De, M.: Realization of semiconductor ternary quantum dot cellular automata. IET Micro Nano Lett. 8, 258–263 (2013)
Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)
Das, J.C., De, D.: Reversible comparator design using quantum dot-cellular automata. IETE J. Res. 62, 323–330 (2016)
Roy, D., Maitra, S., Mukherjee, K., De, D.: Analysis of effect of temperature variation on computational faithfulness of a QCA XOR gate. Presented at International Conference on Electronics, Communication and Instrumentation (ICECI), Kolkata, India, pp. 1–4 (2014)
K. Das, D. De, M. De, Re-Programmable Logic Array for Logic Design and Its Reliability Analysis in QCA, in Emerging Trends in Computing and Communication (ETCC), Lecture Notes in Electrical Engineering, Springer, 298 (2014) 341-352
Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13, 701–708 (2014)
Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bitadder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80, 1404–1414 (2014)
Tehrani, M.A., Safaei, F., Moaiyeri, M.H., Navi, K.: Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectron. J. 42, 913–922 (2011)
Ahmad, F., Bhat, G.M., Khademolhosseini, H., Angizi, S.A.S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)
Perez-Martinez, F., Petersson, K.D., Farrer, I., Anderson, D., Jones, G.A.C., Ritchie, D.A., Smith, C.G.: Realization of a GaAs/AlGaAs-based quantum cellular automata cell. Microelectron. J. 39, 674–677 (2008)
Macuccia, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekamb, G., Kern, D.P.: A QCA cell in silicon on insulator technology: theory and experiment. Superlattices Microstruct. 34, 205–211 (2003)
Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015)
Vankamamidi, V., Ottavi, M., Lombardi, F.: A serial-memory by quantum-dot cellular automata. IEEE Trans. Comput. 57, 606–618 (2008)
Das, J.C., De, D.: Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess. Microsyst. 42, 10–23 (2016)
Kassa, S.R., Nagaria, R.K.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15, 324–334 (2016)
Das, J.C., De, D.: Quantum dot-cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inform. Technol. Electron. Eng. 17, 224–236 (2016)
Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron. J. 43, 929–940 (2012)
Du, H., Lv, H., Zhang, Y., Peng, F., Xie, G.: Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J. Comput. Electron. 15(4), 1484–1497 (2016)
Arjmand, M.M., Soryani, M., Navi, K.: Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Dev. Syst. 7, 263–272 (2013)
Sayedsalehi, S., Azghadi, M.R., Angizi, S., Navi, K.: Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf. Sci. 311, 86–101 (2015)
Fijani, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3, 27–37 (2001)
Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39, 426–433 (2015)
Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test. 25, 39–54 (2009)
Sen, B., Dutta, M., Sikdar, B.K.: Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectron. J. 45, 239–248 (2014)
Anderson, N.G., Maalouli, F., Mestancik, J.: Quantifying the computational efficacy of nanocomputing channels. Nano Commun. Netw. 3, 139–150 (2012)
Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)
Acknowledgements
The authors are grateful to DST FIST Project, WBUT, India, for providing with the grant for accomplishment of the project under File No. SR/FST/ETI-296/2011, and TEQIP II, WBUT, India.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
De, D., Das, J.C. Nanocomputing channel fidelity of QCA code converter circuits under thermal randomness. J Comput Electron 19, 419–434 (2020). https://doi.org/10.1007/s10825-019-01411-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-019-01411-6