Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Changes in firing patterns are an important hallmark of the functional status of neuronal networks. We apply dynamical systems methods to understand transitions between irregular and rhythmic firing in an excitatory-inhibitory neuronal network model. Using the geometric theory of singular perturbations, we systematically reduce the full model to a simpler set of equations, one that can be studied analytically. The analytic tools are used to understand how an excitatory-inhibitory network with a fixed architecture can generate both activity patterns for possibly different values of the intrinsic and synaptic parameters. These results are applied to a recently developed model for the subthalamopallidal network of the basal ganglia. The results suggest that an increase in correlated activity, corresponding to a pathological state, may be due to an increased level of inhibition from the striatum to the inhibitory GPe cells along with an increased ability of the excitatory STN neurons to generate rebound bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.

    PubMed  CAS  Google Scholar 

  • Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neuroscience, 25, 523–531.

    Article  Google Scholar 

  • Cragg, S., Baufreton, J., Xue, Y., Bolam, J., & Bevan, M. (2004). Synaptic release of dopamine in the subthalamic nucleus. European Journal of Neuroscience, 20, 1788–1802.

    Article  PubMed  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems. Philadelphia: SIAM.

    Google Scholar 

  • Golomb, D., & Rinzel, J. (1994). Clustering in globally coupled inhibitory neurons. Physica D, 72, 259–282.

    Article  Google Scholar 

  • Golomb, D., Wang, X. J., & Rinzel, J. (1994). Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. Journal of Neurophysiology, 72, 1109–1126.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrance current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hurtado, J., Gray, C., Tamas, L., & Sigvardt, K. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proceedings of the National Academy of Sciences of the United States of America, 96, 1674–1679.

    Article  PubMed  CAS  Google Scholar 

  • Jolliffe, I. (1986). Principal component analysis. New York: Springer.

    Google Scholar 

  • Kopell, N., & Ermentrout, G. B. (2002). Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler & G. Iooss (Eds.), Handbook of Dynamical Systems II: Towards Applications (pp. 3–54). Amsterdam: Elsevier.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. New York: Springer.

    Google Scholar 

  • Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus, and subthalamic nucleus in parkinsonian patients. Neuroscience, 96, 549–564.

    Article  PubMed  CAS  Google Scholar 

  • Nejshtadt, A. (1985). Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly cross the imaginary axis. Uspehi matematičeskih nauk, 40, 190–191.

    Google Scholar 

  • Parra, P., Gulyas, A. I., & Miles, R. (1998). How many subtypes of inhibitory cells in the hippocampus? Neuron, 20, 983–993.

    Article  PubMed  CAS  Google Scholar 

  • Pinkus, A. (2000). Weierstrass and approximation theory. Journal of Approximation Theory, 107, 1–66.

    Article  Google Scholar 

  • Pinsky, P., & Rinzel, J. (1995). Synchrony measures for biological neural networks. Biological Cybernetics, 73, 129–137.

    PubMed  CAS  Google Scholar 

  • Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 8559–8571.

    PubMed  CAS  Google Scholar 

  • Reyes, A. (2003). Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neuroscience, 6, 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. In B. Sleeman & R. Jarvis (Eds.), Ordinary and Partial Differential Equations. New York: Springer-Verlag.

    Google Scholar 

  • Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In A. Gleason (Ed.), Proceedings of the International Congress of Mathematicians, American Mathematical Society, Providence, RI (pp. 1578–1594).

  • Rubin, J., & Terman, D. (2000). Analysis of clustered firing patterns in synaptically coupled networks of oscillators. Journal of Mathematical Biology, 41, 513–545.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, J., & Terman, D. (2000). Geometric analysis of population rhythms in synaptically coupled neuronal networks. Neural Computation, 12, 597–645.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, J., & Terman, D. (2002). Geometric singular perturbation analysis of neuronal dynamics. In B. Fiedler & G. Iooss (Eds.), Handbook of Dynamical Systems II: Towards Applications (pp. 93–146). Amsterdam: Elsevier.

    Google Scholar 

  • Steriade, M., McCormick, D., & Sejnowski, T. (1993). Thalamocortical oscillations in the sleep and aroused brain. Science, 262, 679–685.

    Article  PubMed  CAS  Google Scholar 

  • Strogatz, S., & Mirollo, R. (1991). Stability of incoherence in a population of coupled oscillators. Journal of Statistical Physics, 63, 613–636.

    Article  Google Scholar 

  • Su, J., Rubin, J., & Terman, D. (2003). Effects of noise on elliptic bursters. Nonlinearity, 17, 133–157.

    Article  Google Scholar 

  • Terman, D., Bose, A., & Kopell, N. (1996). Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms. Proceedings of the National Academy of Sciences of the United States of America, 93, 15417–15422.

    Article  PubMed  CAS  Google Scholar 

  • Terman, D., Rubin, J., Yew, A., & Wilson, C. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.

    PubMed  CAS  Google Scholar 

  • Thunberg, H. (2001). Periodicity versus chaos in one-dimensional dynamics. SIAM Review, 43, 3–30.

    Article  Google Scholar 

  • van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balance state in a model of cortical circuits. Neural Computation, 10, 1321–1371.

    Article  PubMed  Google Scholar 

  • Wang, X. J., Golomb, D., & Rinzel, J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: Specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 92, 5577–5581.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.

    Google Scholar 

  • Wang, X. J., & Rinzel, J. (1993). Spindle rhythmicity in the reticularis thalamic nucleus: Synchronization among mutually inhibitory neurons. Neuroscience, 53, 899–904.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. J. (2004). Basal ganglia. In G.M. Shepherd (Ed.), The Synaptic Organization of the Brain (pp. 361–413). New York: Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Best.

Additional information

Action Editor: Carson Chow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, J., Park, C., Terman, D. et al. Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks. J Comput Neurosci 23, 217–235 (2007). https://doi.org/10.1007/s10827-007-0029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0029-7

Keywords