Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

To establish the relationship between locomotory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synaptic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (1) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (2) existence of some form of neuromuscular (stretch receptor) feedback, (3) invariance of neuromuscular wavelength, (4) biphasic dependence of frequency on synaptic signaling, and (5) decrease of frequency with increase of the muscle time constant. Based on (1) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (1) and (2) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data (3), (4), and (5), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akay, T., Haehn, S., Schmitz, J., & Buschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology, 92, 42–51.

    Article  PubMed  Google Scholar 

  • Bargmann, C. I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

    PubMed  CAS  Google Scholar 

  • Bryden, J., & Cohen, N. (2004). A simulation model of the locomotion controlers for the nematode Caenorhabditis elegans. In: S. Schaal et al. (Eds.), From animals to animats 8: Proc. Eight Intern. Conf. on Simulation of Adaptive Behavior (pp. 183–192). Cambridge: MIT Press.

    Google Scholar 

  • Chalfie, M., & White, J. (1988). The nervous system. In: W. B. Wood (Ed.), The nematode Caenorhabditis elegans (pp. 337–391). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Chalfie, M., et al. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. Journal of Neuroscience, 5, 956–964.

    PubMed  CAS  Google Scholar 

  • Chen, B. L., Hall, D. H., & Chklovskii, D. B. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America, 103, 4723–4728.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, C. J., et al. (2005). An automated system for measuring parameters of nematode sinusoidal movement. BMC Genetics, 6, 5.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. E., & Stretton, A. O. W. (1989). Signaling properties of Ascaris motorneurons: Graded active responses, graded synaptic transmission and tonic transmitter release. Journal of Neuroscience, 9, 415–425.

    PubMed  CAS  Google Scholar 

  • Davies, A. G., et al. (2003). A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell, 115, 655–666.

    Article  PubMed  CAS  Google Scholar 

  • Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210, 492–498.

    Article  PubMed  CAS  Google Scholar 

  • de Bono, M., & Maricq, A. V. (2005). Neuronal substrates of complex behaviors in C. elegans. Annual Review of Neuroscience, 28, 451–501.

    Article  PubMed  CAS  Google Scholar 

  • Francis, M. M., Mellem, J. E., & Maricq, A. V. (2003). Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends in Neurosciences, 26, 90–99.

    Article  PubMed  CAS  Google Scholar 

  • Friesen, W. O., & Cang, J. (2001). Sensory and central mechanisms control intersegmental coordination. Current Opinion in Neurobiology, 11, 678–683.

    Article  PubMed  CAS  Google Scholar 

  • Gengyo-Ando, K., et al. (1993). The C. elegans unc-18 gene encodes a protein expressed in motor neurons. Neuron, 11, 703–711.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M. B., Hall, D. H., Avery, L., & Lockery, S. R. (1998). Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron, 20, 763–772.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M. B., & Schwarz, E. M. (2003). Transducing touch in Caenorhabditis elegans. Annual Review of Physiology, 65, 429–452.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102, 3184–3191.

    Article  PubMed  CAS  Google Scholar 

  • Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55, 247–303.

    PubMed  CAS  Google Scholar 

  • Hobert, O. (2003). Behavioral plasticity in C. elegans: Paradigms, circuits, genes. Journal of Neurobiology, 54, 203–223.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y., et al. (1999). The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. Journal of Neuroscience, 19, 539–548.

    PubMed  CAS  Google Scholar 

  • Jospin, M., Jacquemond, V., Mariol, M. C., Segalat, L., & Allard, B. (2002). The L-type voltage-dependent Ca2 +  channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. Journal of Cell Biology, 159, 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Karbowski, J., Cronin, C. J., Seah, A., Mendel, J. E., Cleary, D., & Sternberg, P. W. (2006). Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. Journal of Theoretical Biology, 242, 652–669.

    Article  PubMed  Google Scholar 

  • Lee, R. Y. N., Lobel, L., Hengartner, M., Horvitz, H. R., & Avery, L. (1997). Mutations in the α1 subunit of an L-type voltage-activated Ca2 +  channel cause myotonia in Caenorhabditis elegans. EMBO Journal, 16, 6066–6076.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Feng, Z., Sternberg, P. W., & Xu, X. Z. S. (2006). A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature, 440, 684–687.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Chen, B., Gaier, E., Joshi, J., & Wang, Z.-W. (2006). Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabdidtis elegans. Journal of Biological Chemistry, 281, 7881–7889.

    Article  PubMed  CAS  Google Scholar 

  • Maduro, M., & Pilgrim, D. (1995). Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics, 141, 977–988.

    PubMed  CAS  Google Scholar 

  • Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.

    PubMed  CAS  Google Scholar 

  • Marder, E., Bucher, D., Schulz, D. J., & Taylor, A. L. (2005). Invertebrate central pattern generation moves along. Current Biology, 15, R685–R699.

    CAS  Google Scholar 

  • Maryon, E. B., Coronado, R., & Anderson, P. (1996). unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. Journal of Cell Biology, 134, 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Maryon, E. B., Saari, B., & Anderson, P. (1998). Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans. Journal of Cell Science, 111, 2885–2895.

    PubMed  CAS  Google Scholar 

  • McIntire, S. L., Jorgensen, E., Kaplan, J., & Horvitz, H. R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature, 364, 337–341.

    Article  PubMed  CAS  Google Scholar 

  • Mendel, J. E., et al. (1995). Participation of the protein Go in multiple aspects of behavior in C. elegans. Science, 267, 1652–1655.

    Article  PubMed  CAS  Google Scholar 

  • Moerman, D. G., & Fire, A. (1997). Muscle: Structure, function, and development. In D. L. Riddle, et al. (Eds.), C. elegans II (pp. 417–470). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Niebur, E., & Erdos, P. (1991). Theory of the locomotion of nematodes. Biophysical Journal, 60, 1132–1146.

    Article  PubMed  Google Scholar 

  • Nusbaum, M. P., & Beenhakker M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., & Katsura, I. (2000). Identification and characterization of the high-affinity choline transporter. Nature Neuroscience, 3, 120–125.

    Article  PubMed  CAS  Google Scholar 

  • Schuske, K., Beg, A. A., & Jorgensen, E. M. (2004). The GABA nervous system in C. elegans. Trends in Neurosciences, 27, 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Segalat, L., Elkes, D. A., & Kaplan, J. M. (1995). Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science, 267, 1648–1651.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, F. K., & Mulloney, B. (1998). Intersegmental coordination in invertebrates and vertebrates. Current Opinion in Neurobiology, 8, 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Westview Press.

  • Suzuki, H., et al. (2003). In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron, 39, 1005–1017.

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis, N., Shreffler, W., Wang, S., & Driscoll, M. (1997). unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron, 18, 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. W., Saifee, O., Nonet, M. L., & Salkoff, L. (2001). Slo-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron, 32, 867–881.

    Article  PubMed  CAS  Google Scholar 

  • Weimer, R. M., et al. (2003). Defects in synaptic vesicle docking in unc-18 mutants. Nature Neuroscience, 6, 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  • White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, 314, 1–340.

    Article  Google Scholar 

  • Wicks, S. R., Roehrig, C. J., & Rankin, C. H. (1996). A dynamic network simulation of the nematode tap withdrawal circuits: Predictions concerning synaptic function using behavioral criteria. Journal of Neuroscience, 16, 4017–4031.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Karbowski.

Additional information

Action Editor: Frances K. Skinner

Electronic supplementary material

Below is the link to the supplementary materials

(PDF 60.4 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karbowski, J., Schindelman, G., Cronin, C.J. et al. Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. J Comput Neurosci 24, 253–276 (2008). https://doi.org/10.1007/s10827-007-0054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0054-6

Keywords