Abstract
Nonlinear modeling of multi-input multi-output (MIMO) neuronal systems using Principal Dynamic Modes (PDMs) provides a novel method for analyzing the functional connectivity between neuronal groups. This paper presents the PDM-based modeling methodology and initial results from actual multi-unit recordings in the prefrontal cortex of non-human primates. We used the PDMs to analyze the dynamic transformations of spike train activity from Layer 2 (input) to Layer 5 (output) of the prefrontal cortex in primates performing a Delayed-Match-to-Sample task. The PDM-based models reduce the complexity of representing large-scale neural MIMO systems that involve large numbers of neurons, and also offer the prospect of improved biological/physiological interpretation of the obtained models. PDM analysis of neuronal connectivity in this system revealed “input–output channels of communication” corresponding to specific bands of neural rhythms that quantify the relative importance of these frequency-specific PDMs across a variety of different tasks. We found that behavioral performance during the Delayed-Match-to-Sample task (correct vs. incorrect outcome) was associated with differential activation of frequency-specific PDMs in the prefrontal cortex.
Similar content being viewed by others
References
Abbott, L. F. (1999). Lapique’s introduction of the integrate-and-fire model neuron. Brain Research Bulletin, 50, 303–304.
Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neuroscience Letters, 310, 57–60.
Anderson, C. H., & Eliasmith, C. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems (computational neuroscience). MIT Press.
Anderson, C., & Horne, J. A. (2003). Prefrontal cortex: links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology, 40, 349–357.
Baker, S. N., Kilner, J. M., Pinches, E. M., & Lemon, R. N. (1999). The role of synchrony and oscillations in the motor output. Experimental Brain Research, 128, 109–117.
Benchenane, K., Tiesinga, P. H., & Battaglia, F. P. (2011). Oscillations in the prefrontal cortex: a gateway to memory and attention. Current Opinion in Neurobiology, 21, 1–11.
Berger, T. W., Eriksson, J. L., Ciarolla, D. A., & Sclabassi, R. J. (1988). Nonlinear systems analysis of the hippocampal perforant path-dentate system. II. Effects of random train stimulation. Journal of Neurophysiology, 60, 1077–1094.
Berger, T. W., Song, D., Chan, R. H., & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multi-output nonlinear dynamic modeling. Proceedings of the IEEE, 98, 356–374.
Berger, T. W., Hampson, R. E., Song, D., Goonawardena, A., Marmarelis, V. Z., & Deadwyler, S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8, 046017.
Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., et al. (2012). A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 198–211.
Brandenberger, G. (2003). The Ulradien rhythm of sleep: diverse relations with pituitary and adrenal hormones. Revue Neurologique, 159(11), S5–S10.
Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.
Buzsaki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15, 827–840.
Canolty, R. T., Ganguly, K., Kennerley, S. W., Cadieu, C. F., Koepsell, K., Wallis, J. D., et al. (2010). Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proceedings of the National Academy of Sciences of the United States of America, 107, 17356–17361.
Churchland, P. S., & Sejnowski, T. J. (1999). The computational brain. MIT Press.
Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize Local Field Potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23, 11741–11752.
Deadwyler, S. A., & Hampson, R. E. (2004). Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron, 42, 465–476.
Dobson, A. J. (2002). An introduction to generalized linear models. CRC Press.
Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., & Gaal, G. (1998). Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology, 79, 159–173.
Eeckman, F. H. (1992). Neural systems: Analysis and modeling.
Ekstrom, A. D., Caplan, J., Ho, E., Shattuck, K., Fried, I., & Kahana, M. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 15, 881–889.
Fetz, E. E., Chen, D., Murthy, V. N., & Matsumura, M. (2000). Synaptic interactions mediating synchrony and oscillations in primate sensorimotor cortex. Journal of Physiology, Paris, 94, 323–331.
FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. Bulletin of Mathematical Biophysics, 17, 257–278.
Fox, S. E., Wolfson, S., & Ranck, J. B. J. (1986). Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Experimental Brain Research, 62, 495–508.
Friedrich, R. W., Habermann, C. J., & Laurent, G. (2004). Multiplexingusing synchrony in the zebra fish olfactory bulb. Nature Neuroscience, 7, 862–871.
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.
Fries, P., Nikolic, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30, 309–316.
Gabor, S., Hangya, B., Hernadi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. Journal of Neuroscience, 30, 13578–13585.
Hampson, R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Fuqua, J., Gerhardt, G. A., et al. (2012a). A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 184–197. doi:10.1109/TNSRE.2012.2189163. PMID: 22438334.
Hampson, R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Riley, M. R., Goonawardena, A. V., et al. (2012b). Closing the loop for memory prostheses: detecting the role of hippocampal neural ensembles using nonlinear models. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 510–525. doi:10.1109/TNSRE.2012.2190942. PMID: 22498704.
Hampson, R. E., Gerhardt, G. A., Marmarelis, V. Z., Song, D., Opris, I., Santos, L., et al. (2012c). Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. Journal of Neural Engineering, 9(5), 056012. doi:10.1088/1741-2560/9/5/056012.
Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793–817.
Hertz, J., Krogh, A., Palmer, R.G. (1991). Introduction to the theory of neural computation. Addison-Wesley.
Hille, B. (2001). Ionic channels of excitable membranes (3rd ed.). Sinauer Associates.
Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London, Series B: Biological Sciences, 221, 87–102.
Hobson, J., & Pace-Schott, E. (2002). The cognitive neuroscience of sleep: neuronal systems, con sciousness and learning. Nature Reviews Neuroscience, 3, 679–693.
Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558.
Hyman, J., Zilli, E., Paley, A., & Hasselmo, M. (2005). Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus, 15, 739–749.
Izhikevich, E. M. (2007). Dynamical systems in neuroscience: Geometry of excitability and bursting. MIT Press.
Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science, 105, 3593–3598.
Jacobs, J., Hwang, G., Curran, T., & Kahana, M. J. (2006). EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. NeuroImage, 15, 978–987.
Jacobs, J., Kahana, M. J., Ekstrom, A. D., & Fried, I. (2007). Brain oscillations control timing of single-neuron activity in humans. Journal of Neuroscience, 27, 3839–3844.
Jensen, O., et al. (2002). Oscillations in the alpha band increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882.
Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.
Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biology, 3, e402.
Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience, 26, 1669–1672.
Kiss, T., Hoffmann, W. E., & Hajós, M. (2011). Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. The International Journal of Neuropsychopharmacology, 14, 29–42.
Klimesch, W., et al. (1998). Induced alpha-band power changes in the human EEG and attention. Neuroscience Letters, 244, 73–76.
Koch, C., & Segev, I. (1989). Methods in neuronal modeling: From synapses to networks. MIT Press.
Lebedev, M. A., & Nelson, R. J. (1995). Rhythmically firing (20–50 Hz) neurons in monkey primary somatosensory cortex: activity patterns during initiation of vibratory-cued hand movements. Journal of Comparative Neuroscience, 2, 313–334.
Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21, 573.
Marmarelis, V. Z. (1997). Modeling methodology for nonlinear physiological systems. Annals of Biomedical Engineering, 25, 239.
Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems. Wiley Interscience & IEEE Press.
Marmarelis, V. Z., & Berger, T. W. (2005). General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Mathematical Biosciences, 196, 1–13.
Marmarelis, P. Z., & Marmarelis, V. Z. (1978). Analysis of physiological systems: The white-noise approach. Plenum Press.
Marmarelis, V. Z., & Orme, M. E. (1993). Modeling of neural systems by use of neuronal modes. IEEE Transactions on Biomedical Engineering, 40, 1149–1158.
Marmarelis, V. Z., Zanos, T. P., & Berger, T. W. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations. Annals of Biomedical Engineering, 37, 1654–1667.
Marmarelis, V. Z., Shin, D. C., Song, D., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2012). Design of optimal stimulation patterns for neuronal ensembles based on Volterra-type hierarchical modeling. Journal of Neural Engineering, 9(6), 066003. doi:10.1088/1741-2560/9/6/066003. PMID: 23075519.
Marmarelis, V. Z., Shin, D. C., Song, D., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2013). Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes. Journal of Comparative Neuroscience, 34(1), 73–87. doi:10.1007/s10827-012-0407-7. PMID: 23011343.
Murthy, V. N., & Fetz, E. E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 89, 5670–5674.
Murthy, V. N., & Fetz, E. E. (1996). Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. Journal of Neurophysiology, 76, 3949–3982.
Opris, I., Hampson, R. E., Stanford, T. R., Gerhardt, G. A., & Deadwyler, S. A. (2011). Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. Journal of Cognitive Neuroscience, 23, 1507–1521.
Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., et al. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 100, 7931–7936.
Rosenblatt, F. (1962). Principles of neurodynamics. Spartan Books.
Sanes, J. N., & Donoghue, J. P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proceedings of the National Academy of Sciences of the United States of America, 90, 4470–4474.
Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 21341–21346.
Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.
Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(49–65), 111–125.
Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54, 1053–1066.
Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2009). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22, 1340–1351.
Vertes, R. P. (2005). Hippocampal theta rhythm: a tag for short term memory. Hippocampus, 15, 923–935.
von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313.
Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.
Zanos, T. P., Courellis, S. H., Berger, T. W., Hampson, R. E., Deadwyler, S. A., & Marmarelis, V. Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16, 336–352.
Zanos, T. P., Hampson, R. E., Deadwyler, S. A., Berger, T. W., & Marmarelis, V. Z. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part II: application to the rat hippocampus. Annals of Biomedical Engineering, 37, 1668–1682.
Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156, 238–246.
Acknowledgments
This work was supported by NIH-NIBIB grant P41-EB001978 to the Biomedical Simulations Resource at USC, the DARPA contracts N66601-09-C-2080 and N66601-09-C-2081, and NSF grant EEC-0310723.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: B. A. Olshausen
Rights and permissions
About this article
Cite this article
Marmarelis, V.Z., Shin, D.C., Song, D. et al. On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes. J Comput Neurosci 36, 321–337 (2014). https://doi.org/10.1007/s10827-013-0475-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-013-0475-3