Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Modeling the interactions between stimulation and physiologically induced APs in a mammalian nerve fiber: dependence on frequency and fiber diameter

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Electrical stimulation of nerve fibers is used as a therapeutic tool to treat neurophysiological disorders. Despite efforts to model the effects of stimulation, its underlying mechanisms remain unclear. Current mechanistic models quantify the effects that the electrical field produces near the fiber but do not capture interactions between action potentials (APs) initiated by stimulus and APs initiated by underlying physiological activity. In this study, we aim to quantify the effects of stimulation frequency and fiber diameter on AP interactions involving collisions and loss of excitability. We constructed a mechanistic model of a myelinated nerve fiber receiving two inputs: the underlying physiological activity at the terminal end of the fiber, and an external stimulus applied to the middle of the fiber. We define conduction reliability as the percentage of physiological APs that make it to the somatic end of the nerve fiber. At low input frequencies, conduction reliability is greater than 95% and decreases with increasing frequency due to an increase in AP interactions. Conduction reliability is less sensitive to fiber diameter and only decreases slightly with increasing fiber diameter. Finally, both the number and type of AP interactions significantly vary with both input frequencies and fiber diameter. Modeling the interactions between APs initiated by stimulus and APs initiated by underlying physiological activity in a nerve fiber opens opportunities towards understanding mechanisms of electrical stimulation therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal, R., & Sarma, S.V. (2012). Performance limitations of relay neurons. PLoS computational biology, 8 (8), e1002,626.

    Article  CAS  Google Scholar 

  • Bair, W., Koch, C., Newsome, W., Britten, K. (1994). Power spectrum analysis of bursting cells in area mt in the behaving monkey. Journal of Neuroscience, 14(5), 2870–2892.

    Article  CAS  PubMed  Google Scholar 

  • Barolat, G., Zeme, S., Ketcik, B. (1991). Multifactorial analysis of epidural spinal cord stimulation. Stereotactic and functional neurosurgery, 56(2), 77–103.

    Article  CAS  PubMed  Google Scholar 

  • Baron, R. (2009). Neuropathic pain: a clinical perspective. In Canning, B.J., & Spina, D. (Eds.) Sensory Nerves (pp. 3–30). Springer.

  • Bruns, T.M., Bhadra, N., Gustafson, K.J. (2009). Bursting stimulation of proximal urethral afferents improves bladder pressures and voiding. Journal of Neural Engineering, 6(6), 1–8.

    Article  Google Scholar 

  • Crago, P.E., & Makowski, N.S. (2014). Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location. Journal of Neural Engineering, 11(5), 1–9.

    Google Scholar 

  • De Luca, C.J., LeFever, R.S., McCue, M.P., Xenakis, A.P. (1982). Behaviour of human motor units in different muscles during linearly varying contractions. The Journal of Physiology, 329(1), 113–128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrens, D., Sritharan, D., Sarma, S.V. (2015). Closed-loop control of a fragile network: application to seizure-like dynamics of an epilepsy model. Frontiers in neuroscience, 9, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foutz, T.J., & McIntyre, C.C. (2010). Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of neural engineering, 7(6), 1–10.

    Article  Google Scholar 

  • Frankenhaeuser, B., & Huxley, A.F. (1964). The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. The Journal of Physiology, 171(2), 302–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill, W.M., & Mortimer, J.T. (1998). Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. IEEE Transactions on Rehabilitation Engineering, 6(4), 364–373.

    Article  CAS  PubMed  Google Scholar 

  • Groves, D.A., & Brown, V.J. (2005). Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neuroscience & Biobehavioral Reviews, 29(3), 493–500.

    Article  Google Scholar 

  • Hines, M.L., & Carnevale, N.T. (1997). The NEURON simulation environment. Neural Computation, 9(6), 1179–1209.

    Article  CAS  PubMed  Google Scholar 

  • van den Honert, C., & Mortimer, J.T. (1981). A technique for collision block of peripheral nerve: Frequency dependence. IEEE Transactions on Biomedical Engineering, 5(28), 379–382.

    Article  Google Scholar 

  • Hursh, J.B. (1939). Conduction velocity and diameter of nerve fibers. American Journal of Physiology, 127 (1), 131–139.

    Article  Google Scholar 

  • Iggo, A. (1958). The electrophysiological identification of single nerve fibres, with particular reference to the slowest-conducting vagal afferent fibres in the cat. The Journal of Physiology, 142(1), 110–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jänig, W, Grossmann, L., Gorodetskaya, N. (2009). Mechano-and thermosensitivity of regenerating cutaneous afferent nerve fibers. Experimental Brain Research, 196(1), 101–114.

    Article  PubMed  Google Scholar 

  • Kajander, K.C., & Bennett, G.J. (1992). Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in a beta and a delta primary afferent neurons. Journal of Neurophysiology, 68(3), 734–744.

    Article  CAS  PubMed  Google Scholar 

  • Katz, B. (1950). Action potentials from a sensory nerve ending. The Journal of Physiology, 111(3-4), 248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kralj, A.R., & Bajd, T. (1989). Functional electrical stimulation: standing and walking after spinal cord injury. Boca Raton: CRC Press.

    Google Scholar 

  • McIntyre, C.C., & Grill, W.M. (1999). Model-based design of stimulus waveforms for selective microstimulation in the central nervous system. In Proceedings of the First Joint BMES/EMBS Conference, (Vol. 1 p. 384).

  • McIntyre, C.C., Richardson, A.G., Grill, W.M. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87(2), 995–1006.

    Article  PubMed  Google Scholar 

  • McNeal, D.R. (1976). Analysis of a model for excitation of myelinated nerve. IEEE Transactions on Biomedical Engineering, 23(4), 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Medtronic Neuromodulation. (2007). Technical design summary: Model 39565 specify 5-6-5 surgical lead.

  • Mortimer, J.T., & Bhadra, N. (2004). Peripheral nerve and muscle stimulation. In Neuroprosthetics: Theory and Practice, World Scientific (pp. 638–682).

  • Olin, J.C., Kidd, D.H., North, R.B. (1998). Postural changes in spinal cord stimulation perceptual thresholds. Neuromodulation: Technology at the Neural Interface, 1(4), 171–175.

    Article  CAS  Google Scholar 

  • Peckham, P.H., & Kilgore, K.L. (2013). Challenges and opportunities in restoring function after paralysis. IEEE Transactions on Biomedical Engineering, 60(3), 602–609.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G., Müller, GR, Pfurtscheller, J., Gerner, H.J., Rupp, R. (2003). ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters, 351(1), 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Reilly, J.P. (1989). Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields. Medical and Biological Engineering and Computing, 27(2), 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Sacré, P, Sarma, S.V., Guan, Y., Anderson, W.S. (2015). Electrical neurostimulation for chronic pain: on selective relay of sensory neural activities in myelinated nerve fibers. In Proceeding of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4705–4708).

  • Sadashivaiah, V. (2018). Modeling the interactions in a mammalian nerve fiber. https://github.com/vjysd/nerve-fiber-modeling.

  • Sadashivaiah, V., Sacré, P, Guan, Y., Anderson, W.S., Sarma, S.V. (2017). Modeling electrical stimulation of mammalian nerve fibers: a mechanistic versus probabilistic approach. In Proceeding of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3868–3871).

  • Sadashivaiah, V., Sacré, P, Guan, Y., Anderson, W.S., Sarma, S.V. (2018). Studying the interactions in a mammalian nerve fiber: a functional modeling approach. In Proceeding of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/EMBC.2018.8512975, https://ieeexplore.ieee.org/document/8512975 (pp. 3525–3528).

  • Sadashivaiah, V., Sacré, P, Guan, Y., Anderson, W.S., Sarma, S.V. (2018). Selective relay of afferent sensory-induced action potentials from peripheral nerve to brain and the effects of electrical stimulation. In Proceeding of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/EMBC.2018.8513029, https://ieeexplore.ieee.org/document/8513029 https://ieeexplore.ieee.org/document/8513029 (pp. 3606–3609).

  • Schwarz, J.R., Reid, G., Bostock, H. (1995). Action potentials and membrane currents in the human node of ranvier. Pflü,gers Archiv, 430(2), 283–292.

    Article  CAS  Google Scholar 

  • Shealy, C.N., Mortimer, J.T., Reswick, J.B. (1967). Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesthesia & Analgesia, 46(4), 489–491.

    Article  CAS  Google Scholar 

  • Shechter, R., Yang, F., Xu, Q., Cheong, Y.K., He, S.Q., Sdrulla, A., Carteret, A.F., Wacnik, P.W., Dong, X., Meyer, R.A., et al. (2013). Conventional and kilohertz-frequency spinal cord stimulation produces intensity-and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology, 119(2), 422–432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, Y., Li, H.M., Xie, R.G., Yue, Z.F., Song, X.J., Hu, S.J., Xing, J.L. (2012). Evoked bursting in injured Aβ dorsal root ganglion neurons: a mechanism underlying tactile allodynia. Pain, 153(3), 657–665.

    Article  PubMed  Google Scholar 

  • Stidd, D.A., Wuollet, A., Bowden, K., Price, T., Patwardhan, A., Barker, S., Weinand, M.E., Annabi, J., Annabi, E. (2012). Peripheral nerve stimulation for trigeminal neuropathic pain. Pain Physician, 15(1), 27–33.

    PubMed  PubMed Central  Google Scholar 

  • Struijk, J.J., Holsheimer, J., Van Veen, B., Boom, H.B. (1991). Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Transactions on Biomedical Engineering, 38(1), 104–110.

    Article  CAS  PubMed  Google Scholar 

  • Tarler, M.D., & Mortimer, J.T. (2004). Selective and independent activation of four motor fascicles using a four contact nerve-cuff electrode. IEEE Transactions on neural systems and rehabilitation engineering, 12(2), 251–257.

    Article  PubMed  Google Scholar 

  • Troy, J., & Robson, J. (1992). Steady discharges of x and y retinal ganglion cells of cat under photopic illuminance. Visual neuroscience, 9(6), 535–553.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, D.J., & Durand, D.M. (2002). Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 294–303.

    Article  PubMed  Google Scholar 

  • Wall, P.D., & Sweet, W.H. (1967). Temporary abolition of pain in man. Science, 155(3758), 108–109.

    Article  CAS  PubMed  Google Scholar 

  • Wesselink, W.A., Holsheimer, J., Boom, H.B. (1999). A model of the electrical behaviour of myelinated sensory nerve fibres based on human data. Medical and Biological Engineering and Computing, 37(2), 228–235.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, K., & Horch, K. (1993). Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes. IEEE transactions on biomedical engineering, 40(5), 492–494.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work supported by NIH R01 AT009401 to S.V.S, Y.G., and W.S.A., and by NPRI postdoctoral fellowship awarded to P.S. We would like to thank Dr. Michael Caterina, Neurosurgery Pain Research Institute, The Johns Hopkins University School of Medicine for valuable and insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Sadashivaiah.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Gaute T. Einevoll

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.14 MB)

Appendix

Appendix

The fiber model and its parameters at 37°C Fiber geometry

ᅟ:

axon diameter, d = 6–12 μm (step size of 3 μm)

ᅟ:

ratio of axon to fiber diameter, rdD = 1

ᅟ:

fiber diameter, D = d × rdD

ᅟ:

ratio of li to fiber diameter, \(r_{\mathrm {l_{i}D}} = 100\)

ᅟ:

internodal length, \(l_{i} = D \times r_{\mathrm {l_{i}D}}\)

ᅟ:

fiber length, L = 10 cm

ᅟ:

nodal length, l = 2.5 μm

ᅟ:

number of nodes, \(n = \lceil 1 + \frac {L}{l + l_{i}}\rceil \)

Parameters

ᅟ:

αmA = 1.86,αmB = 65.6,αmC = 10.3

ᅟ:

αhA = 0.0336,αhB = − 27,αhC = 11.0

ᅟ:

αnA = 0.00789,αnB = − 9.2,αnC = 1.10

ᅟ:

αsA = 0.00122,αsB = 71.5,αsC = 23.6

ᅟ:

βmA = 0.0860,βmB = 61.3,βmC = 9.16

ᅟ:

βhA = 2.30,βhB = 55.2,βhC = 13.4

ᅟ:

βnA = 0.0142,βnB = 8,βnC = 10.5

ᅟ:

βsA = 0.000739,βsB = 3.9,βsC = 21.8

ᅟ:

gating coefficients α∗A, β∗A in ms− 1

ᅟ:

gating coefficients α∗B, β∗B, α∗C, β∗C in mV

ᅟ:

sodium permeability, PNa = 7.04 × 10− 3 cm/s

ᅟ:

potassium conductance (fast), gKf = 0.015 S/cm2

ᅟ:

potassium conductance (slow), gKf = 0.030 S/cm2

ᅟ:

leakage conductance, gL = 60 × 10− 3 S/cm2

ᅟ:

sodium concentration outside, [Na]o = 154 mM

ᅟ:

sodium concentration inside, [Na]i = 35 mM

ᅟ:

potassium concentration outside, [K]o = 5.6 mM

ᅟ:

potassium concentration inside, [K]i = 155 mM

ᅟ:

sodium equilibrium potential, VNa = − 84 mV

ᅟ:

potassium equilibrium potential, VK = + 60 mV

ᅟ:

resting membrane potential, Vr = − 84 mV

ᅟ:

Faraday constant, F = 96485 C/mol

ᅟ:

gas constant, R = 8.3144 J/Kmol

ᅟ:

absolute temperature, T = 310.15 K

ᅟ:

membrane potential, V mV

Membrane currents

ᅟ:

sodium current, INa mA/cm2

ᅟ:

potassium current (fast), IKf mA/cm2

ᅟ:

potassium current (slow), IKs mA/cm2

ᅟ:

leakage current, IL mA/cm2

ᅟ:

\(I_{Na} = m^{3}hP_{\text {Na}}\frac {VF^{2}}{RT}\frac {([\text {Na}]_{\mathrm {o}} - [\text {Na}]_{\mathrm {i}}e^{VF/RT})}{(1 - e^{VF/RT})}\)

ᅟ:

IKf = n4gKf(VVK)

ᅟ:

IKs = sgKs(VVK)

ᅟ:

IL = gL(VVL)

Simulation parameters

ᅟ:

simulation duration, tstop = 30 s

ᅟ:

simulation step size, tstep = 0.001 ms

ᅟ:

simulation repeats, nrep = 50

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadashivaiah, V., Sacré, P., Guan, Y. et al. Modeling the interactions between stimulation and physiologically induced APs in a mammalian nerve fiber: dependence on frequency and fiber diameter. J Comput Neurosci 45, 193–206 (2018). https://doi.org/10.1007/s10827-018-0703-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0703-y

Keywords