Abstract
Electrical activity of excitable cells results from ion exchanges through cell membranes, so that genetic or epigenetic changes in genes encoding ion channels are likely to affect neuronal electrical signaling throughout the brain. There is a large literature on the effect of variations in ion channels on the dynamics of spiking neurons that represent the main type of neurons found in the vertebrate nervous systems. Nevertheless, non-spiking neurons are also ubiquitous in many nervous tissues and play a critical role in the processing of some sensory systems. To our knowledge, however, how conductance variations affect the dynamics of non-spiking neurons has never been assessed. Based on experimental observations reported in the biological literature and on mathematical considerations, we first propose a phenotypic classification of non-spiking neurons. Then, we determine a general pattern of the phenotypic evolution of non-spiking neurons as a function of changes in calcium and potassium conductances. Furthermore, we study the homeostatic compensatory mechanisms of ion channels in a well-posed non-spiking retinal cone model. We show that there is a restricted range of ion conductance values for which the behavior and phenotype of the neuron are maintained. Finally, we discuss the implications of the phenotypic changes of individual cells at the level of neuronal network functioning of the C. elegans worm and the retina, which are two non-spiking nervous tissues composed of neurons with various phenotypes.
Similar content being viewed by others
Code accessibility
The code used in this paper is available at https://gitlab.com/lois76/conductance_nonspikingneurons_code.
References
Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Computational Biology, 2(7), e94.
Alonso, L. M., & Marder, E. (2019). Visualization of currents in neural models with similar behavior and different conductance densities. eLife, 8, e42722.
Aoyama, T., Kamiyama, Y., Usui, S., Blanco, R., Vaquero, C. F., & de la Villa, P. (2000). Ionic current model of rabbit retinal horizontal cell. Neuroscience Research, 37(2), 141–151.
Art, J., & Goodman, M. (1996). Ionic conductances and hair cell tuning in the turtle cochlea a. Annals of the New York Academy of Sciences, 781(1), 103–122.
Aussel, A., Buhry, L., Tyvaert, L., & Ranta, R. (2018). A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations. Journal of computational neuroscience, 45(3), 207–221.
Berry, H., & Genet, S. (2021). A model of on/off transitions in neurons of the deep cerebellar nuclei: deciphering the underlying ionic mechanisms. The Journal of Mathematical Neuroscience, 11(1), 1–34.
Bidaye, S. S., Bockemühl, T., & Büschges, A. (2018). Six-legged walking in insects: how cpgs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. Journal of neurophysiology, 119(2), 459–475.
Boos, R., Schneider, H., & Wassle, H. (1993). Voltage-and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina. Journal of Neuroscience, 13(7), 2874–2888.
Burrows, M., Laurent, G., & Field, L. (1988). Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. Journal of Neuroscience, 8(8), 3085–3093.
Camperi, M., & Wang, X.-J. (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. Journal of computational neuroscience, 5(4), 383–405.
Czeredys, M. (2020). Dysregulation of neuronal calcium signaling via store-operated channels in huntington’s disease. Frontiers in Cell and Developmental Biology, 8, 1645.
Davis, R., & Stretton, A. (1989a). Passive membrane properties of motorneurons and their role in long-distance signaling in the nematode ascaris. Journal of Neuroscience, 9(2), 403–414.
Davis, R. E., & Stretton, A. (1989b). Signaling properties of ascaris motorneurons: graded active responses, graded synaptic transmission, and tonic transmitter release. Journal of Neuroscience, 9(2), 415–425.
Dobosiewicz, M., Liu, Q., & Bargmann, C. I. (2019). Reliability of an interneuron response depends on an integrated sensory state. eLife, 8,
Drion, G., O’Leary, T., & Marder, E. (2015). Ion channel degeneracy enables robust and tunable neuronal firing rates. Proceedings of the National Academy of Sciences, 112(38), E5361–E5370.
Eliasmith, C., & Trujillo, O. (2014). The use and abuse of large-scale brain models. Current opinion in neurobiology, 25, 1–6.
Fettiplace, R. (1987). Electrical tuning of hair cells in the inner ear. Trends in Neurosciences, 10(10), 421–425.
Field, G. D., & Chichilnisky, E. (2007). Information processing in the primate retina: circuitry and coding. Annual Review of Neuroscience (Palo Alto, CA), 30, 1–30.
Geffeney, S. L., Cueva, J. G., Glauser, D. A., Doll, J. C., Lee, T. H. -C., Montoya, M., Karania, S., Garakani, A. M., Pruitt, B. L., & Goodman, M. B. (2011). Deg/enac but not trp channels are the major mechanoelectrical transduction channels in a c. elegans nociceptor. Neuron, 71(5), 845–857.
Giovannini, F., Knauer, B., Yoshida, M., & Buhry, L. (2017). The can-in network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus, 27(4), 450–463.
Goaillard, J. -M., & Marder, E. (2021). Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annual Review of Neuroscience, 44.
Goodman, M. B., Hall, D. H., Avery, L., & Lockery, S. R. (1998). Active currents regulate sensitivity and dynamic range in c. elegans neurons. Neuron, 20(4), 763–772.
Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in caenorhabditis elegans. Proceedings of the National Academy of Sciences, 102(9), 3184–3191.
Hart, A. C., Sims, S., & Kaplan, J. M. (1995). Synaptic code for sensory modalities revealed by c. elegans glr-1 glutamate receptor. Nature, 378(6552), 82–85.
Heyes, S., Pratt, W. S., Rees, E., Dahimene, S., Ferron, L., Owen, M. J., & Dolphin, A. C. (2015). Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in neurobiology, 134, 36–54.
Hughes, S. W., Cope, D. W., Tóth, T. I., Williams, S. R., & Crunelli, V. (1999). All thalamocortical neurones possess a t-type ca2+ ‘window’ current that enables the expression of bistability-mediated activities. The Journal of physiology, 517(3), 805–815.
Hurley, M. J., & Dexter, D. T. (2012). Voltage-gated calcium channels and parkinson’s disease. Pharmacology & therapeutics, 133(3), 324–333.
Izhikevich, E. M. (2007). Dynamical systems in neuroscience. MIT press.
Jiang, J., Su, Y., Zhang, R., Li, H., Tao, L., & Liu, Q. (2022). C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program. Nature Communications, 13(1), 1–15.
Jiménez Laredo, J. L., Naudin, L., Corson, N., & Fernandes C. M. (2022). A methodology for determining ion channels from membrane potential neuronal recordings. In Applications of Evolutionary Computation, pages 15–29. Springer International Publishing.
Kamaleddin, M. A. (2021). Degeneracy in the nervous system: from neuronal excitability to neural coding. BioEssays, p 2100148.
Kamiyama, Y., Wu, S. M., & Usui, S. (2009). Simulation analysis of bandpass filtering properties of a rod photoreceptor network. Vision research, 49(9), 970–978.
Kilicarslan, I., Zanetti, L., Novelli, E., Schwarzer, C., Strettoi, E., & Koschak, A. (2021). Knockout of cav1. 3 l-type calcium channels in a mouse model of retinitis pigmentosa. Scientific Reports, 11(1), 1–12.
Kindt, K. S., Viswanath, V., Macpherson, L., Quast, K., Hu, H., Patapoutian, A., & Schafer, W. R. (2007). Caenorhabditis elegans trpa-1 functions in mechanosensation. Nature neuroscience, 10(5), 568–577.
Ko, M. L., Liu, Y., Dryer, S. E., & Ko, G.Y.-P. (2007). The expression of l-type voltage-gated calcium channels in retinal photoreceptors is under circadian control. Journal of neurochemistry, 103(2), 784–792.
Koch, U., Bässler, U., & Brunner, M. (1989). Non-spiking neurons supress fluctuations in small networks. Biological cybernetics, 62(1), 75–81.
Kourennyi, D. E., Liu, X.-D., Hart, J., Mahmud, F., Baldridge, W. H., & Barnes, S. (2004). Reciprocal modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide. Journal of neurophysiology, 92(1), 477–483.
Laurent, G., & Burrows, M. (1989). Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust. Journal of Neuroscience, 9(9), 3019–3029.
Laurent, G., & Burrows, M. (1989). Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. Journal of Neuroscience, 9(9), 3030–3039.
Lindsay, T. H., Thiele, T. R., & Lockery, S. R. (2011). Optogenetic analysis of synaptic transmission in the central nervous system of the nematode caenorhabditis elegans. Nature communications, 2(1), 1–9.
Liu, P., Ge, Q., Chen, B., Salkoff, L., Kotlikoff, M. I., & Wang, Z. -W. (2011). Genetic dissection of ion currents underlying all-or-none action potentials in c. elegans body-wall muscle cells. The Journal of physiology, 589(1), 101–117.
Liu, P., Chen, B., Mailler, R., & Wang, Z.-W. (2017). Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nature Communications, 8(1), 1–16.
Liu, Q., Hollopeter, G., & Jorgensen, E. M. (2009). Graded synaptic transmission at the caenorhabditis elegans neuromuscular junction. Proceedings of the National Academy of Sciences, 106(26), 10823–10828.
Liu, Q., Kidd, P. B., Dobosiewicz, M., & Bargmann, C. I. (2018). C. elegans awa olfactory neurons fire calcium-mediated all-or-none action potentials. Cell, 175(1), 57–70.
Liu, X.-D., & Kourennyi, D. E. (2004). Effects of tetraethylammonium on kx channels and simulated light response in rod photoreceptorss. Annals of Biomedical Engineering, 32(10), 1428–1442.
Lockery, S. R., Goodman, M. B., & Faumont, S. (2009). First report of action potentials in a c. elegans neuron is premature. Nature Neuroscience, 12(4), 365–366.
Mao, B.-Q., MacLeish, P. R., & Victor, J. D. (2003). Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. Biophysical Journal, 84(4), 2756–2767.
Mayama, C. (2014). Calcium channels and their blockers in intraocular pressure and glaucoma. European Journal of Pharmacology, 739, 96–105.
Mellem, J. E., Brockie, P. J., Madsen, D. M., & Maricq, A. V. (2008). Action potentials contribute to neuronal signaling in c. elegans. Nature Neuroscience, 11(8), 865–867.
Naudin, L., Corson, N., Aziz-Alaoui, M., Jimenez Laredo, J. L., & Démare, T. (2021). On the modeling of the three types of non-spiking neurons of the caenorhabditis elegans. International Journal of Neural Systems, 31(02), 2050063.
Naudin, L., Jiménez Laredo, J. L., Liu, Q., & Corson, N. (2022a). Systematic generation of biophysically detailed models with generalization capability for non-spiking neurons. PLoS One, 17(5), e0268380.
Naudin, L., Laredo, J. L. J., and N.Corson. A simple model of nonspiking neurons. Neural Computation, 34 (10): 2075–2101, 2022b.
Nicoletti, M., Loppini, A., Chiodo, L., Folli, V., Ruocco, G., & Filippi, S. (2019). Biophysical modeling of c. elegans neurons: Single ion currents and whole-cell dynamics of awcon and rmd. PLoS One, 14(7), e0218738.
O’Hagan, R., Chalfie, M., & Goodman, M. B. (2005). The mec-4 deg/enac channel of caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature neuroscience, 8(1), 43–50.
O’Leary, T., Sutton, A. C., & Marder, E. (2015). Computational models in the age of large datasets. Current opinion in neurobiology, 32, 87–94.
Onasch, S., & Gjorgjieva, J. (2020). Circuit stability to perturbations reveals hidden variability in the balance of intrinsic and synaptic conductances. Journal of Neuroscience, 40(16), 3186–3202.
Publio, R., Oliveira, R. F., & Roque, A. C. (2006). A realistic model of rod photoreceptor for use in a retina network model. Neurocomputing, 69(10–12), 1020–1024.
Ramot, D., MacInnis, B. L., & Goodman, M. B. (2008). Bidirectional temperature-sensing by a single thermosensory neuron in c. elegans. Nature Neuroscience, 11(8), 908.
Roberts, A., & Bush, B. M. (1981). Neurones without impulses: their significance for vertebrate and invertebrate nervous systems (Vol. 6). Cambridge University Press.
Sarpeshkar, R. (1998). Analog versus digital: extrapolating from electronics to neurobiology. Neural computation, 10(7), 1601–1638.
Schilardi, G., & Kleinlogel, S. (2021). Two functional classes of rod bipolar cells in the healthy and degenerated optogenetically treated murine retina. Frontiers in Cellular Neuroscience, 15.
Schulz, D. J., Goaillard, J.-M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature neuroscience, 9(3), 356–362.
Silverstein, S. M., Demmin, D. L., Schallek, J. B., & Fradkin, S. I. (2020). Measures of retinal structure and function as biomarkers in neurology and psychiatry. Biomarkers in Neuropsychiatry, 2,
Soofi, W., Archila, S., & Prinz, A. A. (2012). Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons. Journal of computational neuroscience, 33(1), 77–95.
Stutzmann, G. E. (2021). Ryr2 calcium channels in the spotlight–i’m ready for my close up, dr. alzheimer! Cell Calcium, 94, 102342.
Supnet, C., & Bezprozvanny, I. (2010). The dysregulation of intracellular calcium in alzheimer disease. Cell Calcium, 47(2), 183–189.
Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., Anderson, M. A., Mody, I., Olsen, M. L., Sofroniew, M. V., et al. (2014). Astrocyte kir4. 1 ion channel deficits contribute to neuronal dysfunction in huntington’s disease model mice. Nature Neuroscience, 17(5), 694–703.
Usui, S., Ishihaiza, A., Kamiyama, Y., & Ishii, H. (1996). Ionic current model of bipolar cells in the lower vertebrate retina. Vision research, 36(24), 4069–4076.
Van Hook, M. J., Nawy, S., & Thoreson, W. B. (2019). Voltage-and calcium-gated ion channels of neurons in the vertebrate retina. Progress in retinal and eye research, 72,
Villa, C., Suphesiz, H., Combi, R., & Akyuz, E. (2020). Potassium channels in the neuronal homeostasis and neurodegenerative pathways underlying alzheimer’s disease: An update. Mechanisms of Ageing and Development, 185,
Waldner, D., Giraldo Sierra, N., Bonfield, S., Nguyen, L., Dimopoulos, I., Sauvé, Y., Stell, W., & Bech-Hansen, N. (2018). Cone dystrophy and ectopic synaptogenesis in a cacna1f loss of function model of congenital stationary night blindness (csnb2a). Channels, 12(1), 17–33.
White, J. G., Southgate, E., Thomson, J. N., Brenner, S., et al. (1986). The structure of the nervous system of the nematode caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1165), 1–340.
Williams, B., Maddox, J. W., & Lee, A. (2021). Calcium channels in retinal function and disease. Annual Review of Vision Science, 8.
Williams, S. R., Toth, T. I., Turner, J. P., Hughes, S. W., & Crunelli, V. (1997). The ‘window’component of the low threshold ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. The Journal of physiology, 505(3), 689–705.
Yanagi, M., Joho, R., Southcott, S., Shukla, A., Ghose, S., & Tamminga, C. (2014). Kv3. 1-containing k+ channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs. Molecular psychiatry, 19(5), 573–579.
Zamponi, G. W., Striessnig, J., Koschak, A., & Dolphin, A. C. (2015). The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacological reviews, 67(4), 821–870.
Zhang, L., Li, X., Zhou, R., & Xing, G. (2006). Possible role of potassium channel, big k in etiology of schizophrenia. Medical hypotheses, 67(1), 41–43.
Zhang, L., Zheng, Y., Xie, J., & Shi, L. (2020). Potassium channels and their emerging role in parkinson’s disease. Brain Research Bulletin, 160, 1–7.
Acknowledgements
We thank Dr. Mellem and Dr. Liu for their consents to reproduce their experimental data.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflicts of interest
The authors declare no competing interests.
Additional information
Action Editor: Upinder Bhalla
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Naudin, L., Raison-Aubry, L. & Buhry, L. A general pattern of non-spiking neuron dynamics under the effect of potassium and calcium channel modifications. J Comput Neurosci 51, 173–186 (2023). https://doi.org/10.1007/s10827-022-00840-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-022-00840-w