Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling Soft Error Propagation in Near-Threshold Combinational Circuits Using Neural Networks

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

With CMOS technology down-scaling, an assuring approach to reduce the power consumption of VLSI designs is Near-Threshold Computing (NTC). However, lowering the supply voltage continuously, exacerbates reliability challenges in modern CMOS logics due to creation of soft errors introduced by single event transients (SETs). In this work, we presented a fast-yet-accurate neural network based model to calculate soft error rate (SER) in circuits in the near-threshold voltage domain. Multi-Layer perceptron (MLP) and recurrent neural network (RNN) used for modeling each gate of a given library. The training data set includes injected SET samples, expected outputs and parameters of each gate. Finally, the propagation of faults in the investigated circuits is calculated using our proposed method. On average, experimental results show that we can estimate soft error rate 10-20 times faster in comparison to HSPICE simulation, with less than 0.1% accuracy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: OSDI, vol 16, pp 265– 283

  2. Benso A, Prinetto P (2003) Fault injection techniques and tools for embedded systems reliability evaluation. Springer Science & Business Media, Berlin, vol 23. https://doi.org/10.1007/b105828

  3. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

  4. Bohr M Silicon technology leadership for the mobility era. http://www.intel.com/content/dam/www/public/us/en/documents/presentation/silicon-technology-leadership-presentation.pdf

  5. Csáji BC (2001) Approximation with artificial neural networks. Fac Sci Etvs Lornd Univ Hung 24:48

    Google Scholar 

  6. Damien A et al (2016) Tflearn https://github.com/tflearn/tflearn

  7. Dreslinski R, Wieckowski M, Blaauw D, Mudge T (2009) Near threshold computing: Overcoming performance degradation from aggressive voltage scaling. In: Proceedings of Workshop energy-efficient design, pp 44–49

  8. Dreslinski RG, Wieckowski M, Blaauw D, Sylvester D, Mudge T (2010) Near-threshold computing: Reclaiming moore’s law through energy efficient integrated circuits. Proc IEEE 98 (2):253–266. https://doi.org/10.1109/JPROC.2009.2034764

    Article  Google Scholar 

  9. Dubois M, Annavaram M, Stenström P (2012) Parallel computer organization and design. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139051224

  10. Evans A, Alexandrescu D, Costenaro E, Chen L (2013) Hierarchical rtl-based combinatorial ser estimation. In: 2013 IEEE 19th international On-line testing symposium (IOLTS). IEEE, pp 139–144. https://doi.org/10.1109/IOLTS.2013.6604065

  11. Fang Y, Yagoub MC, Wang F, Zhang QJ (2000) A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks. IEEE Trans Microw Theory Techn 48(12):2335–2344. https://doi.org/10.1109/MWSYM.2000.863321

    Article  Google Scholar 

  12. Gaillard R (2011) Single event effects: Mechanisms and classification. In: Soft errors in modern electronic systems. Springer, pp 27–54

  13. Gunneflo U, Karlsson J, Torin J (1989) Evaluation of error detection schemes using fault injection by heavy-ion radiation. In: 1989. FTCS-19. Digest of Papers., Nineteenth International Symposium on Fault-tolerant Computing. IEEE, pp 340–347. https://doi.org/10.1109/FTCS.1989.105590

  14. Hagan MT, Demuth HB, Beale MH et al (1996) Neural network design. Pws Pub, Boston, vol 20

  15. Hosseinabady M, Lotfi-Kamran P, Mathew J, Mohanty S, Pradhan D (2011) Single-event transient analysis in high speed circuits. In: 2011 international symposium on Electronic system design (ISED). IEEE, pp 112–117. https://doi.org/10.1109/ISED.2011.73

  16. Huang RHM, Wen CHP (2014) Advanced soft-error-rate (ser) estimation with striking-time and multi-cycle effects. In: Proceedings of the 51st Annual Design Automation Conference. ACM, pp 1–6. https://doi.org/10.1145/2593069.2593081

  17. Jones E, Oliphant T, Peterson P et al SciPy: Open source scientific tools for Python (2001–). http://www.scipy.org/. [Online; accessed <today>]

  18. Karlsson J, Liden P, Dahlgren P, Johansson R, Gunneflo U (1994) Using heavy-ion radiation to validate fault-handling mechanisms. IEEE Micro 14(1):8–23. https://doi.org/10.1109/40.259894

    Article  Google Scholar 

  19. Kauppila J, Sternberg AL, Alles ML, Francis AM, Holmes J, Amusan OA, Massengill L (2009) A bias-dependent single-event compact model implemented into bsim4 and a 90 nm cmos process design kit. IEEE Trans Nuclear Sci 56(6):3152–3157. https://doi.org/10.1109/TNS.2009.2033798

    Article  Google Scholar 

  20. Khare S, Jain S (2013) Prospects of near-threshold voltage design for green computing. In: 2013 26th international conference on VLSI Design and 2013 12th international conference on embedded systems (VLSID). IEEE, pp 120–124. https://doi.org/10.1109/VLSID.2013.174

  21. Lee H, Ha D (1993) Atalanta: An efficient atpg for combinational circuits. Technical Report 93–12, Dep’t of Electrical Eng., Virginia Polytechnic Institute and State University, Blacksburg, Virginia

  22. Li J, Draper J (2016) Accelerating soft-error-rate (ser) estimation in the presence of single event transients. In: Proceedings of the 53rd Annual Design Automation Conference. ACM, pp 55. https://doi.org/10.1145/2897937.2897976

  23. Loveless T, Kauppila J, Jagannathan S, Ball D, Rowe J, Gaspard N, Atkinson N, Blaine R, Reece T, Ahlbin J et al (2012) On-chip measurement of single-event transients in a 45 nm silicon-on-insulator technology. IEEE Trans Nucl Sci 59(6):2748–2755. https://doi.org/10.1109/TNS.2012.2218257

    Article  Google Scholar 

  24. Mahatme N, Gaspard N, Assis T, Jagannathan S, Chatterjee I, Loveless T, Bhuva B, Massengill L, Wen S, Wong R (2014) Impact of technology scaling on the combinational logic soft error rate. In: 2014 IEEE International Reliability physics symposium. IEEE, pp 5f–2. https://doi.org/10.1109/IRPS.2014.6861093

  25. Miskov-Zivanov N, Marculescu D (2006) Mars-c: modeling and reduction of soft errors in combinational circuits. In: Proceedings of the 43rd annual Design Automation Conference. ACM, pp 767–772. https://doi.org/10.1145/1146909.1147104

  26. Oliphant TE (2006) A guide to NumPy. Trelgol Publishing, USA, vol 1

  27. Rajaraman R, Kim J, Vijaykrishnan N, Xie Y, Irwin MJ (2006) Seat-la: a soft error analysis tool for combinational logic. In: 2006. Held Jointly with 5th International Conference on Embedded Systems and Design., 19th International Conference on VLSI Design. IEEE, pp 4–pp. https://doi.org/10.1109/VLSID.2006.143

  28. Ramakrishnan K, Rajaraman R, Vijaykrishnan N, Xie Y, Irwin MJ, Unlu K (2008) Hierarchical soft error estimation tool (hseet). In: 2008. ISQED 2008. 9th International Symposium on Quality Electronic Design. IEEE, pp 680–683. https://doi.org/10.1109/ISQED.2008.4479819

  29. Rao RR, Chopra K, Blaauw DT, Sylvester DM (2007) Computing the soft error rate of a combinational logic circuit using parameterized descriptors. IEEE Trans Comput-Aided Des Integr Circ Syst 26(3):468–479. https://doi.org/10.1109/TCAD.2007.891036

    Article  Google Scholar 

  30. Seifert N, Zhu X, Moyer D, Mueller R, Hokinson R, Leland N, Shade M, Massengill L (2001) Frequency dependence of soft error rates for sub-micron cmos technologies. In: International electron devices meeting. Technical digest (cat. no. 01CH37224). IEEE, pp 14–4

  31. Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L (2002) Modeling the effect of technology trends on the soft error rate of combinational logic. In: 2002. DSN 2002. Proceedings. International Conference on Dependable Systems and Networks. IEEE, pp 389–398. https://doi.org/10.1109/DSN.2002.1028924

  32. Suykens JA, Vandewalle JP (2012) Nonlinear Modeling: advanced black-box techniques. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-1-4615-5703-6

  33. Wali I, Deveautour B, Virazel A, Bosio A, Girard P, Reorda MS (2017) A low-cost reliability vs. cost trade-off methodology to selectively harden logic circuits. J Electron Test 33(1):25–36. https://doi.org/10.1007/s10836-017-5640-6

    Article  Google Scholar 

  34. Wang F, Agrawal VD (2010) Soft error rate determination for nanoscale sequential logic. In: 2010 11th International Symposium on Quality Electronic Design (ISQED). IEEE, pp 225–230. https://doi.org/10.1109/ISQED.2010.5450421

  35. Wrobel F, Dilillo L, Touboul A, Pouget V, Saigné F (2014) Determining realistic parameters for the double exponential law that models transient current pulses. IEEE Trans Nucl Sci 61(4):1813–1818. https://doi.org/10.1109/TNS.2014.2299762

    Article  Google Scholar 

  36. Zhang B, Wang WS, Orshansky M (2006) Faser: Fast analysis of soft error susceptibility for cell-based designs. In: 2006. ISQED’06. 7th International Symposium on Quality Electronic Design. IEEE, pp 6–pp. https://doi.org/10.1109/ISQED.2006.64

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Safari.

Additional information

Responsible Editor: F. L. Vargas

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajian, A., Safari, S. Modeling Soft Error Propagation in Near-Threshold Combinational Circuits Using Neural Networks. J Electron Test 35, 401–412 (2019). https://doi.org/10.1007/s10836-019-05796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-019-05796-x

Keywords