Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Electromagnetic Parameters Measurement of Sheet Using Separate Microstrip Line

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

A fixture for broadband electromagnetic parameters (εr and μr) measurement of sheet material is proposed. The novelty includes splitting the microstrip line in half to move calibration planes to sample fringes. By introducing a connecting strip and ground block and placing the sheet sample between them, a new microstrip line is constituted. Its effective electromagnetic parameters can be determined by the transmission/reflection method and actual electromagnetic parameters of the sheet can be calculated by the conformal mapping principle. The proposed fixture features two advantages over existing techniques, high calibration accuracy and more convenience for the measurement of the conductor-backed sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Application Note. (2006). Agilent basics of measuring the dielectric properties of materials, Agilent literature number 5989-2589EN, June 26, 2006: 20–22

  2. Baker-Jarvis J, Vanzura EJ, Kissick WA (1990) Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans Microwave Theory Tech 38(8):1096–1103

    Article  Google Scholar 

  3. Caijun Z, Quanxing J, Shenhui J (2011) Calibration-independent and position-insensitive transmission/reflection method for permittivity measurement with one sample in coaxial line. IEEE Trans Electromagnetic Compat 53(3):684–689

    Article  Google Scholar 

  4. Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) In: Wiley J, Chichester E (eds) Microwave electronics: measurement and materials characterization, pp 195–197

    Chapter  Google Scholar 

  5. Das NK, Voda SM, Pozar DM (1987) Two methods for the measurement of substrate dielectric constant. IEEE Trans Microwave Theory Tech 35(7):636–642

    Article  Google Scholar 

  6. Davis WA, Bunting CF, Bucca SE (1992) Measurement and analysis for stripline material parameters using network analyzers. IEEE Trans Instrum Meas 41(2):286–290

    Article  Google Scholar 

  7. Hinojosa J (2001) S-parameter broad-band measurements on-microstrip and fast extraction of the substrate intrinsic properties. IEEE Microwave Wireless Components Lett 30(1):305–307

    Article  Google Scholar 

  8. Ligthart LP (1983) A fast computational technique for accurate permittivity determination using transmission line methods. IEEE Trans Microwave Theory Tech 31(3):249–254

    Article  Google Scholar 

  9. Moravek O, Hoffmann K, Polivka M, Jelinek L (2013) Precise measurement using coaxial-to-microstrip transition through radiation suppression. IEEE Trans Microwave Theory Tech 61(8):2956–2965

    Article  Google Scholar 

  10. Narayanan PM (2014) Microstrip transmission line method for broadband permittivity measurement of dielectric substrates. IEEE Trans Microwave Theory Tech 62(11):2784–2790

    Article  Google Scholar 

  11. Pucel RA, Masse DJ (1972) Microstrip propagation on magnetic substrates-part I: design theory. IEEE Trans Microwave Theory Tech 20(5):304–308

    Article  Google Scholar 

  12. RT/duroid 5870/ 5880 Data Sheet. Rogers Corporation, Rogers, http://www.rogerscorp.com/documents/606/acs/RT-duroid-5870-5880-Data-Sheet.pdf

  13. Svacina J (1992) A simple quasi-static determination of basic parameters of multilayer microstrip and coplanar waveguide. IEEE Microwave Guided Wave Lett 2(10):385–387

    Article  Google Scholar 

  14. Wu YQ, Tang ZX, Xu YH, Zhang B (2009) Measuring complex permeability of ferromagnetic thin films using microstrip transmission method. J Electromagnetic Waves Applications 23(10):1303–1311. Accessed 2018

    Article  Google Scholar 

  15. Zhang Y, Zhou TD (2017) Structure and electromagnetic properties of FeSiAl particles coated by MgO. J Magn Magn Mater 426:680–684

    Article  Google Scholar 

  16. Zhang Y, Li E, Guo G, Xu J, Wang C (2014) An estimate of the error caused by the elongation of the wavelength in a focused beam in free-space electromagnetic parameters measurement. Rev Sci Instrum 85(9):094702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Zhang.

Additional information

Responsible Editor: T. Xia

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, E. & Zheng, H. Electromagnetic Parameters Measurement of Sheet Using Separate Microstrip Line. J Electron Test 35, 567–572 (2019). https://doi.org/10.1007/s10836-019-05809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-019-05809-9

Keywords