Abstract
The data generated and stored in mobile devices owned by individuals as well as in various organizations contains a large amount of valuable and important information that can be used to improve service quality, user experience, and satisfaction. However, due to privacy concerns, many entities are reluctant to share their data with others, and this is a major barrier to developing comprehensive models that can provide accurate predictions. Federated learning is a state-of-the-art distributed machine learning approach where multiple clients are allowed to collaboratively train a model while keeping their private training data locally. Although federated learning seems to be a viable solution for jointly training a machine learning model without compromising privacy, sensitive privacy information may still be leaked through shared model parameters and query results. Over the past six years, the researchers have extensively studied privacy protection enhancements of federated learning, and they have revealed that general privacy protection mechanisms can be adopted to mitigate privacy issues of federated learning. However, protecting privacy through federated learning while maintaining data utility is still an open issue. This article provides an overview of federated learning while discussing privacy leakages, possible defense mechanisms, and future research directions of privacy-preserved federated learning.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aimin, Q., Guosong, S., & Wentong, Z. (2018). Assessing China’s Cybersecurity Law. Computer Law & Security Review, 34(6), 1342–1354. https://doi.org/10.1016/j.clsr.2018.08.007
Alaggan, M., Gambs, S., & Kermarrec, A.-M. (2017). Heterogeneous differential privacy. The Journal of Privacy and Confidentiality, 7(2), 1–27. https://doi.org/10.29012/jpc.v7i2.652
Arachchige, P. C. M., Bertók, P., Khalil, I., et al. (2020). Local differential privacy for deep learning. IEEE Internet Things Journal, 7(7), 5827–5842. https://doi.org/10.1109/JIOT.2019.2952146
Arikumar, K. S., Prathiba, S. B., Alazab, M., et al. (2022). FL-PMI: Federated learning-based person movement identification through wearable devices in smart healthcare systems. Sensors, 22(4), 1377. https://doi.org/10.3390/s22041377
Asad, M., Moustafa, A., & Ito, T. (2021). Federated learning versus classical machine learning: A convergence comparison (p. 9). arXiv preprint arXiv:2107.10976. https://doi.org/10.48550/arXiv.2107.10976
Ateniese, G., Mancini, L. V., Spognardi, A., et al. (2015). Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers. International Journal of Security and Networks, 10(3), 137–150. https://doi.org/10.1504/IJSN.2015.071829
Beutel, D. J., Topal, T., Mathur, A., et al. (2020). Flower: A friendly federated learning research framework (p. 15). arXiv preprint arXiv:2007.14390. https://doi.org/10.48550/arXiv.2007.14390
Bhowmick, A., Duchi, J., Freudiger, J., et al. (2018). Protection against reconstruction and its applications in private federated learning (p. 45). arXiv preprint arXiv:1812.00984. https://doi.org/10.48550/arXiv.1812.00984
Bogdanov, D., Laur, S., & Willemson, J. (2008). Sharemind: A framework for fast privacy-preserving computations. Computer Security - ESORICS 2008 (pp. 192–206). https://doi.org/10.1007/978-3-540-88313-5_13
Bonawitz, K., Eichner, H., Grieskamp, W., et al. (2020). TensorFlow Federated: Machine learning on decentralized data. Retrieved from April 10, 2023 from https://www.tensorflow.org/federated
Bonawitz, K., Ivanov, V., Kreuter, B., et al. (2017). Practical secure aggregation for privacy-preserving machine learning. ACM Conf. Comput. Commun. (pp. 1175–1191). https://doi.org/10.1145/3133956.3133982
Caldas, S., Duddu, S. M. K., Wu, P., et al. (2018). LEAF: A benchmark for federated settings (p. 9). arXiv preprint arXiv:1812.01097. https://doi.org/10.48550/arXiv.1812.01097
Carlini, N., Chien, S., Nasr, M., et al. (2022). Membership inference attacks from first principles. 2022 IEEE Secur. Priv. (pp. 1897–1914). https://doi.org/10.1109/SP46214.2022.9833649
Chamikara, M. A. P., Bertók, P., Liu, D., et al. (2018). Efficient data perturbation for privacy preserving and accurate data stream mining. Pervasive and Mobile Computing, 48, 1–19. https://doi.org/10.1016/j.pmcj.2018.05.003
Chen, Y., Guan, R., Gong, X., et al. (2022). D-DAE: Defense-penetrating model extraction attacks. 2023 IEEE Secur. Priv. (pp. 432–449).
Cheng, Y., Liu, Y., Chen, T., et al. (2020). Federated learning for privacy-preserving AI. Communications of the ACM, 63(12), 33–36. https://doi.org/10.1145/3387107
Chik, W. B. (2013). The Singapore Personal Data Protection Act and an assessment of future trends in data privacy reform. Computer Law & Security Review, 29(5), 554–575. https://doi.org/10.1016/j.clsr.2013.07.010
Cramer, R., Damgård, I., & Maurer, U. (2000). General secure multi-party computation from any linear secret-sharing scheme. Advances in Cryptology - EUROCRYPT 2000 (pp. 316–334). https://doi.org/10.1007/3-540-45539-6_22
Ding, X., Zhang, F., & Jin, H. (2019). Data anonymization for big crowdsourcing data. IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 1–6). https://doi.org/10.1109/INFOCOMWKSHPS47286.2019.9093748
Du, Y., Zhou, D., Xie, Y., et al. (2021). Federated matrix factorization for privacy-preserving recommender systems. Applied Soft Computing, 111, 107700. https://doi.org/10.1016/j.asoc.2021.107700
Duan, M., Liu, D., Chen, X., et al. (2020). Self-balancing federated learning with global imbalanced data in mobile systems. IEEE Transactions on Parallel and Distributed Systems, 32(1), 59–71. https://doi.org/10.1109/TPDS.2020.3009406
Dwork, C. (2006). Differential privacy. Automata, Languages and Programming (pp. 1–12). https://doi.org/10.1007/11787006_1
Fang, H., & Qian, Q. (2021). Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet, 13(4), 94. https://doi.org/10.3390/fi13040094
Fredrikson, M., Jha, S., & Ristenpart, T. (2015). Model inversion attacks that exploit confidence information and basic countermeasures. 22ndACM Conf. Comput. Commun. (pp. 1322–1333). https://doi.org/10.1145/2810103.2813677
Fredrikson, M., Lantz, E., Jha, S., et al. (2014). Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. 23rdUSENIX Security (pp. 17–32).
Ganju, K., Wang, Q., Yang, W., et al. (2018). Property inference attacks on fully connected neural networks using permutation invariant representations. ACM Conf. Comput. Commun. (pp. 619–633). https://doi.org/10.1145/3243734.3243834
George, M., & Zoran, O. (2015). A distributed decision support algorithm that preserves personal privacy. Journal of Intelligent Information Systems, 107–132. https://doi.org/10.1007/s10844-014-0331-6
Goldman, E. (2021). An introduction to California’s Consumer Privacy Laws (CCPA and CPRA). Santa Clara Univ. Legal Studies Research Paper (p. 9). https://doi.org/10.2139/ssrn.3896176
Goldreich, O. (1998). Secure multi-party computation. Manuscript. Preliminary version, 78, 110.
Hardy, S., Henecka, W., Ivey-Law, H., et al. (2017). Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption (pp. 60). arXiv preprint arXiv:1711.10677. https://doi.org/10.48550/arXiv.1711.10677
He, C., Li, S., So, J., et al. (2020). FedML: A research library and benchmark for federated machine learning (p. 18). arXiv preprint arXiv:2007.13518. https://doi.org/10.48550/arXiv.2007.13518
Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017). Deep models under the GAN: information leakage from collaborative deep learning. ACM Conf. Comput. Commun. Secur., 603–618. https://doi.org/10.1145/3133956.3134012
Hu, K., Li, Y., Xia, M., et al. (2021). Federated learning: A distributed shared machine learning method. Complexity, 2021, 20. https://doi.org/10.1155/2021/8261663
Hu, Y., Niu, D., Yang, J., et al. (2019). FDML: A collaborative machine learning framework for distributed features. 25thACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (pp. 2232–2240). https://doi.org/10.1145/3292500.3330765
Huang, W., Li, T., Wang, D., et al. (2022). Fairness and accuracy in horizontal federated learning. Information Sciences, 589, 170–185. https://doi.org/10.1016/j.ins.2021.12.102
Imambi, S., Prakash, K. B., & Kanagachidambaresan, G. R. (2021). Pytorch. Programming with TensorFlow: Solution for Edge Computing Applications (pp. 87–104). https://doi.org/10.1007/978-3-030-57077-4_10
Jia, J., Salem, A., Backes, M., et al. (2019). MemGuard: Defending against black-box membership inference attacks via adversarial examples. 2019 ACM SIGSAC Conference on Computer and Communications Security, (pp. 259–274). https://doi.org/10.1145/3319535.3363201
Jing, Q., Wang, W., Zhang, J., et al. (2019). Quantifying the performance of federated transfer learning (p. 7). arXiv preprint arXiv:1912.12795. https://doi.org/10.48550/arXiv.1912.12795
Kairouz, P., McMahan, H. B., Avent, B., et al. (2021). Advances and open problems in federated learning. Foundations and Trends in Machine Learning, 14(1–2), 1–210. https://doi.org/10.1561/2200000083
Kamp, M., Fischer, J., & Vreeken, J. (2021). Federated learning from small datasets (p. 13). arXiv preprint arXiv:2110.03469. https://doi.org/10.48550/arXiv.2110.03469
Kargupta, H., Datta, S., Wang, Q., et al. (2003). On the privacy preserving properties of random data perturbation techniques. Third IEEE International Conference on Data Mining (pp. 99–106). https://doi.org/10.1109/ICDM.2003.1250908
Kuang, Z., & Chen, C. (2023). Research on smart city data encryption and communication efficiency improvement under federated learning framework. Egyptian Informatics Journal, 24(2), 217–227. https://doi.org/10.1016/j.eij.2023.02.005
Kulynych, J., & Korn, D. (2003). The new HIPAA (Health Insurance Portability and Accountability Act of 1996) Medical Privacy Rule: Help or hindrance for clinical research? Circulation, 108(8), 912–914. https://doi.org/10.1161/01.CIR.0000080642.35380.50
Li, N., Li, T., & Venkatasubramanian, S. (2007). t-closeness: Privacy beyond k-anonymity and l-diversity. 2007 IEEE 23rd Int. Conf. Data Eng. (pp. 106–115). https://doi.org/10.1109/ICDE.2007.367856
Li, T., Sahu, A. K., Talwalkar, A., et al. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
Liang, X., Liu, Y., Luo, J., et al. (2021). Self-supervised cross-silo federated neural architecture search (p. 12). arXiv preprint arXiv:2101.11896. https://doi.org/10.48550/arXiv.2101.11896
Ling, Q., Yingjiu, L., & Xintao, W. (2007). Preserving privacy in association rule mining with bloom filters. Journal of Intelligent Information Systems, 253–278. https://doi.org/10.1007/s10844-006-0018-8
Liu, C., Guo, S., Guo, S., et al. (2021). LTSM: Lightweight and trusted sharing mechanism of IoT data in smart city. IEEE Internet of Things Journal, 9(7), 5080–5093. https://doi.org/10.1109/JIOT.2021.3110097
Liu, K., Kargupta, H., & Ryan, J. (2005). Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data Engineering, 18(1), 92–106. https://doi.org/10.1109/TKDE.2006.14
Liu, P., Xu, X., & Wang, W. (2022). Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives. Cybersecurity, 5(1), 1–19. https://doi.org/10.1186/s42400-021-00105-6
Liu, Y., Fan, T., Chen, T., et al. (2021). FATE: An industrial grade platform for collaborative learning with data protection. Journal of Machine Learning Research, 22(1), 10320–10325.
Liu, Y., Kang, Y., Xing, C., et al. (2020). A secure federated transfer learning framework. IEEE Intelligent Systems, 35(4), 70–82. https://doi.org/10.1109/MIS.2020.2988525
Lu, H., Liu, C., He, T., et al. (2020). Sharing models or coresets: A study based on membership inference attack (p. 8). arXiv preprint arXiv:2007.02977. https://doi.org/10.48550/arXiv.2007.02977
Ludwig, H., Baracaldo, N., Thomas, G., et al. (2020). IBM Federated Learning: An enterprise framework white paper v0. 1 (p. 17). arXiv preprint arXiv:2007.10987. https://doi.org/10.48550/arXiv.2007.10987
Luo, X., Wu, Y., Xiao, X., et al. (2021). Feature inference attack on model predictions in vertical federated learning. 2021 IEEE 37thInt. Conf. Data Eng. (pp. 181–192). https://doi.org/10.1109/ICDE51399.2021.00023
Ma, X., Li, B., Jiang, Q., et al. (2021). NOSnoop: An effective collaborative meta-learning scheme against property inference attack. IEEE Internet of Things Journal, 9(9), 6778–6789. https://doi.org/10.1109/JIOT.2021.3112737
Ma, Y., Yu, D., Wu, T., et al. (2019). PaddlePaddle: An open-source deep learning platform from industrial practice. Frontiers of Data and Computing, 1(1), 105–115. https://doi.org/10.11871/jfdc.issn.2096.742X.2019.01.011
Ma, Z., Zhang, M., Liu, J., et al. (2022). An assisted diagnosis model for cancer patients based on federated learning. Frontiers in Oncology, 713. https://doi.org/10.3389/fonc.2022.860532
Machanavajjhala, A., Kifer, D., Gehrke, J., et al. (2007). l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1), 3–es. https://doi.org/10.1145/1217299.1217302
McMahan, B., Moore, E., Ramage, D., et al. (2017). Communication-efficient learning of deep networks from decentralized data. 20thInternational Conference on Artificial Intelligence and Statistics (pp. 1273–1282).
Melis, L., Song, C., De Cristofaro, E., et al. (2019). Exploiting unintended feature leakage in collaborative learning. 2019 IEEE Secur. Priv. (pp. 691–706). https://doi.org/10.1109/SP.2019.00029
Mothukuri, V., Parizi, R. M., Pouriyeh, S., et al. (2021). A survey on security and privacy of federated learning. Future Generation Computer Systems, 115, 619–640. https://doi.org/10.1109/SP.2019.00029
Mugunthan, V., Goyal, P., & Kagal, L. (2021). Multi-VFL: A vertical federated learning system for multiple data and label owners (p. 5). arXiv preprint arXiv:2106.05468. https://doi.org/10.48550/arXiv.2106.05468
Nasr, M., Shokri, R., & Houmansadr, A. (2019). Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. 2019 IEEE Secur. Priv. (pp. 739–753). https://doi.org/10.1109/SP.2019.00065
PaddlePaddle (2020). PaddlePaddle/PaddleFL: Federated Deep Learning in PaddlePaddle. Retrieved April 10, 2023 from https://github.com/PaddlePaddle/PaddleFL
Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. International Conference on the Theory and Applications of Cryptographic Techniques (pp. 223–238). https://doi.org/10.1007/3-540-48910-X_16
Pardau, S. L. (2018). The California Consumer Privacy Act: Towards a European-style privacy regime in the United States. Journal of Technology Law & Policy, 23, 68.
Park, J., & Lim, H. (2022). Privacy-preserving federated learning using homomorphic encryption. Applied Sciences, 12(2), 734. https://doi.org/10.3390/app12020734
Phong, L. T., Aono, Y., Hayashi, T., et al. (2018). Privacy-preserving deep learning via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security, 13(5), 1333–1345. https://doi.org/10.1109/TIFS.2017.2787987
Raymond, W., Jiuyong, L., Ada, F., et al. (2009). (\(\alpha \), k)-anonymous data publishing. Journal of Intelligent Information Systems, 209–234. https://doi.org/10.1007/s10844-008-0075-2
Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks and privacy homomorphisms. Foundations of Secure Computation, 4(11), 169–180.
Roy, A. G., Siddiqui, S., Pölsterl, S., et al. (2019). BrainTorrent: A peer-to-peer environment for decentralized federated learning (p 9). arXiv preprint arXiv:1905.06731. https://doi.org/10.48550/arXiv.1905.06731
Ryffel, T., Trask, A., Dahl, M., et al. (2018). A generic framework for privacy preserving deep learning (p. 5). arXiv preprint arXiv:1811.04017. https://doi.org/10.48550/arXiv.1811.04017
Saha, S., & Ahmad, T. (2021). Federated transfer learning: Concept and applications. Intelligenza Artificiale, 15(1), 35–44. https://doi.org/10.3233/IA-200075
Samarati, P. & Sweeney, L. (1998). Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical Report SRI-CSL-98-04 (p. 19).
Sannai, A. (2018). Reconstruction of training samples from loss functions (p. 11). arXiv preprint arXiv:1805.07337. https://doi.org/10.48550/arXiv.1805.07337
Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613. https://doi.org/10.1145/359168.359176
Sharma, S., Xing, C., Liu, Y., et al. (2019). Secure and efficient federated transfer learning. 2019 IEEE Int. Conf. Big Data (pp. 2569–2576). https://doi.org/10.1109/BigData47090.2019.9006280
Shokri, R., Stronati, M., Song, C., et al. (2017). Membership inference attacks against machine learning models. 2017 IEEE Secur. Priv. (pp. 3–18). https://doi.org/10.1109/SP.2017.41
Stock, J., Wettlaufer, J., Demmler, D., et al. (2022). Property unlearning: A defense strategy against property inference attacks (p. 16). arXiv preprint arXiv:2205.08821. https://doi.org/10.48550/arXiv.2205.08821
Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05), 557–570. https://doi.org/10.1142/S0218488502001648
Tramèr, F., Zhang, F., Juels, A., et al. (2016). Stealing machine learning models via prediction APIs. 25thUSENIX Security (pp. 601–618).
Truex, S., Baracaldo, N., Anwar, A., et al. (2019). A hybrid approach to privacy-preserving federated learning. 12thACM AISec (pp. 1–11). https://doi.org/10.1145/3338501.3357370
Ugur, S., & Osman, A. (2020). A utility based approach for data stream anonymization. Journal of Intelligent Information Systems, 605–631. https://doi.org/10.1007/s10844-019-00577-6
Vaidya, J., Shafiq, B., Fan, W., et al. (2013). A random decision tree framework for privacy-preserving data mining. IEEE Transactions on Dependable and Secure Computing, 11(5), 399–411. https://doi.org/10.1109/TDSC.2013.43
Voigt, P., & von dem Bussche, A. (2017). Rights of Data Subjects. Cham: Springer International Publishing.
Vyas, J., Bhumika, Das, D., et al. (2023). Federated learning based driver recommendation for next generation transportation system. Expert Systems with Applications (pp. 119951). https://doi.org/10.1016/j.eswa.2023.119951
Wang, Z., Song, M., Zhang, Z., et al. (2019). Beyond inferring class representatives: User-level privacy leakage from federated learning. 2019-IEEE Conf. Comput. Commun. (pp. 2512–2520). https://doi.org/10.1109/INFOCOM.2019.8737416
Wei, K., Li, J., Ding, M., et al. (2020). Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15, 3454–3469. https://doi.org/10.1109/TIFS.2020.2988575
Wu, B., Yang, X., Pan, S., et al. (2022). Model extraction attacks on graph neural networks: Taxonomy and realisation. ACM Conf. Comput. Commun. (pp. 337–350). https://doi.org/10.1145/3488932.3497753
Wu, C., Wu, F., Cao, Y., et al. (2021). FedGNN: Federated graph neural network for privacy-preserving recommendation (p. 9). arXiv preprint arXiv:2102.04925. https://doi.org/10.48550/arXiv.2102.04925
Xia, W., Li, Y., Zhang, L., et al. (2021). A vertical federated learning framework for horizontally partitioned labels (p. 10). arXiv preprint arXiv:2106.10056. https://doi.org/10.48550/arXiv.2106.10056
Xu, R., Baracaldo, N., Zhou, Y., et al. (2019). HybridAlpha: An efficient approach for privacy-preserving federated learning. 12thACM AISec (pp. 13–23). https://doi.org/10.1145/3338501.3357371
Xue, Y., Niu, C., Zheng, Z., et al. (2021). Toward understanding the influence of individual clients in federated learning. AAAI Conference on Artificial Intelligence, 35(12), 10560–10567.
Yang, M., Wang, X., Zhu, H., et al. (2021). Federated learning with class imbalance reduction. 2021 29thEuropean Signal Processing Conference (EUSIPCO) (pp. 2174–2178).
Yang, Q., Liu, Y., Chen, T., et al. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 1–19. https://doi.org/10.1145/3298981
Yang, Q., Liu, Y., Cheng, Y., et al. (2019). Federated Learning. Switzerland: Springer Cham.
Yang, S., Ren, B., Zhou, X., et al. (2019c). Parallel distributed logistic regression for vertical federated learning without third-party coordinator (p. 6). arXiv preprint arXiv:1911.09824. https://doi.org/10.48550/arXiv.1911.09824
Yin, X., Zhu, Y., & Hu, J. (2021). A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions. ACM Computing Surveys (CSUR), 54(6), 1–36. https://doi.org/10.1145/3460427
Zhao, Y., Li, M., Lai, L., et al. (2018). Federated learning with non-iid data p. 12. arXiv preprint arXiv:1806.00582. https://doi.org/10.48550/arXiv.1806.00582
Zheng, W., Popa, R. A., Gonzalez, J. E., et al. (2019). Helen: Maliciously secure coopetitive learning for linear models. 2019 IEEE Secur. Priv. (pp. 724–738). https://doi.org/10.1109/SP.2019.00045
Zhong, D., Sun, H., Xu, J., et al. (2022). Understanding disparate effects of membership inference attacks and their countermeasures. 2022 ACM on Asia Conference on Computer and Communications Security (pp. 959–974). https://doi.org/10.1145/3488932.3501279
Zhu, H., Wang, R., Jin, Y., et al. (2021). PIVODL: Privacy-preserving vertical federated learning over distributed labels. IEEE Transactions on Artificial Intelligence, 1–13. https://doi.org/10.1109/TAI.2021.3139055
Funding
No funding was received to assist with the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
Literature search and analysis: Hashan Ratnayake, Lin Chen; Writing - original draft preparation: Hashan Ratnayake; Writing - review and editing: Xiaofeng Ding, Lin Chen; Supervision: Xiaofeng Ding.
Corresponding author
Ethics declarations
Consent for publication
We consent this paper to be published in the Journal of Intelligent Information Systems.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ratnayake, H., Chen, L. & Ding, X. A review of federated learning: taxonomy, privacy and future directions. J Intell Inf Syst 61, 923–949 (2023). https://doi.org/10.1007/s10844-023-00797-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10844-023-00797-x