Abstract
Lot sizing problems are production planning problems with the objective of determining the periods where production should take place and the quantities to be produced in order to satisfy demand while minimizing production, setup and inventory costs. Most lot sizing problems are combinatorial and hard to solve. In recent years, to deal with the complexity and find optimal or near-optimal results in reasonable computational time, a growing number of researchers have employed meta-heuristic approaches to lot sizing problems. One of the most popular meta-heuristics is genetic algorithms which have been applied to different optimization problems with good results. The focus of this paper is on the recent published literature employing genetic algorithms to solve lot sizing problems. The aim of the review is twofold. First it provides an overview of recent advances in the field in order to highlight the many ways GAs can be applied to various lot sizing models. Second, it presents ideas for future research by identifying gaps in the current literature. In reviewing the relevant literature the focus has been on the main features of the lot sizing problems and the specifications of genetic algorithms suggested in solving these problems.
Similar content being viewed by others
References
Afentakis P. (1987) Parallel heuristic algorithm for lot-sizing in multistage production systems. IIE Transactions 19(1): 34–42. doi:10.1080/07408178708975367Institute of Industrial Engineers
Askin R.G., Goldberg J.B. (2002) Design and analysis of lean production systems. Wiley, United States of America
Aytug H., Khouja M., Vergara F.E. (2003) Use of genetic algorithms to solve production and operations management problems: A review. International Journal of Production Research 41(17): 3955–4009. doi:10.1080/00207540310001626319
Bahl H.C., Ritzman L.P., Gupta J.N.D. (1987) Determining lot sizes and resource requirements: A review. Operations Research 35(3): 329–345
Belvaux G., Wolsey L.A. (2001) Modeling practical lot-sizing problems as mixed-integer programs. Management Science 47(7): 993–1007. doi:10.1287/mnsc.47.7.993.9800
Bomberger E. (1966) A dynamic programming approach to a lot scheduling problem. Management Science 12: 778–784
Brahimi N., Dauzere-Peres S., Najid N.M., Nordli A. (2006) Single item lot sizing problems. European Journal of Operational Research 168(1): 1–16. doi:10.1016/j.ejor.2004.01.054
Chang P.T., Yao M.J., Huang S.F., Chen C.T. (2006) A genetic algorithm for solving economic fuzzy lot-size scheduling problem. International of Production Economics 102: 265–288. doi:10.1016/j.ijpe.2005.03.008
Chatfield D.C. (2007) The economic lot scheduling problem: A pure genetic search approach. Computers & Operations Research 34: 2865–2881. doi:10.1016/j.cor.2005.11.001
De Bodt M.A., Gelders L.F., Van Wassenhove L.N. (1984) Lot sizing under dynamic demand conditions: A review. Engineering Costs and Production Economics 8: 165–187. doi:10.1016/0167-188X(84)90035-1
Degraeve Z., Jans R. (2007) A new Dantzig-Wolfe reformulation and branch-and-price algorithm for the capacitated lot sizing problem with set up times. Operations Research 55(5): 909–920. doi:10.1287/opre.1070.0404
Dellaert N., Jeunet J. (2000) Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm. International Journal of Production Research 38(5): 1083–1099. doi:10.1080/002075400189031
Dellaert N., Jeunet J., Jonard N. (2000) A genetic algorithm to solve the general multi level lot-sizing problem with time-varying costs. International Journal of Production Economics 68: 241–257. doi:10.1016/S0925-5273(00)00084-0
Drexl A., Kimms A. (1997) Lot sizing and scheduling-survey and extensions. European Journal of Operational Research 99: 221–235. doi:10.1016/S0377-2217(97)00030-1
Duda J. (2005) Lot-sizing in a foundry using genetic algorithm and repair functions. Lecture Notes in Computer Science 3448: 101–111
Elmaghraby S.E. (1978) The economic lot scheduling problem (ELSP): Review and extensions. Management Science 24(6): 587–598
Gaafar L. (2006) Applying genetic algorithms to dynamic lot sizing with batch ordering. Computers & Industrial Engineering 51(3): 433–444. doi:10.1016/j.cie.2006.08.006
Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. Wiley Series in Engineering: Design and Automation United States of America.
Gopalakrishnan M., Ding K., Bourjolly J.-M., Mohan S. (2001) A tabu search heuristic for the capacitated lot-sizing problem with set-up carryover. Management Science 47(6): 851–863. doi:10.1287/mnsc.47.6.851.9813
Hernandez W., Süer A.G. (1999) Genetic algorithms in lot sizing decisions. Proceedings of the 1999(Congress on Evolutionary Computation 3): 2280–2286
Heuvelvan den W., Wagelmans A.P.M. (2005) A comparison of methods for lot-sizing in a rolling horizon environment. Operations Research Letters 33: 486–496
Hop N.V., Tabucanon M.T. (2005) Adaptive genetic algorithm for lot-sizing problem with self-adjustment operation rate. International of Production Economics 98: 129–135. doi:10.1016/j.ijpe.2004.05.016
Hung Y.-F., Chien K.-L. (2000) Multi-class multi level capacitated lot sizing model. The Journal of the Operational Research Society 51(11): 1309–1318
Hung Y. F., Shih C.-C., Chen C.-P. (1999) Evolutionary algorithms for production planning problems with setup decisions. The Journal of the Operational Research Society 50(8): 857–866
Jans R., Degraeve Z. (2007) Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. European Journal of Operational Research 177(3): 1855–1875. doi:10.1016/j.ejor.2005.12.008
Jans R., Degraeve Z. (2008) Modeling industrial lot sizing: A review. International Journal of Production Research 46(6): 1619–1643. doi:10.1080/00207540600902262
Jung H., Song I., Jeong B. (2007) Genetic algorithm-based integrated production planning considering manufacturing partners. International Journal of Advanced Manufacturing Technology 32: 547–556. doi:10.1007/s00170-005-0347-8
Kämpf M., Köchel P. (2006) Simulation-based sequencing and lot size optimization for a production-and-inventory system with multiple items. International Journal of Production Economics 104(1): 191–200. doi:10.1016/j.ijpe.2006.02.008
Karimi B., Fatemi S.M.T., Fatemi S.M.T., Wilson J.M. (2003) The capacitated lot sizing problem: A review of models and algorithms. Omega 31: 365–378. doi:10.1016/S0305-0483(03)00059-8
Karimi B., Fatemi S.M.T., Fatemi S.M.T., Wilson J.M. (2006) A tabu search heuristic for solving the CLSP with backlogging and setup carryover. The Journal of the Operational Research Society 57(2): 140–147
Khouja M., Michalewics Z., Wilmot M. (1998) The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research 110: 509–524. doi:10.1016/S0377-2217(97)00270-1
Kimms A. (1999) A genetic algorithm for multi level, multi-machine lot sizing and scheduling. Computers & Operations Research 26: 829–848. doi:10.1016/S0305-0548(98)00089-6
Kirca O., Kokten M. (1994) New heuristic approach for the multi-item dynamic lot sizing problem. European Journal of Operational Research 75(2): 332–341. doi:10.1016/0377-2217(94)90078-7
Kohlmorgen U., Schmeck H., Haase K. (1999) Experience with fine-grained parallel genetic algorithms. Annals of Operations Research 90: 203–219. doi:10.1023/A:1018912715283
Kuik R., Salomon M., Van Wassenhove L.N. (1994) Batching decisions: Structure and models. European Journal of Operational Research 75: 243–263. doi:10.1016/0377-2217(94)90072-8
Kuo H., Inman R. (1990) A practical heuristic for the group technology economic lot scheduling problem. International Journal of Production Research 28: 709–722. doi:10.1080/00207549008942750
Li Y., Chen J., Cai X. (2007) Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing. International Journal of Production Economics 105(2): 301–317. doi:10.1016/j.ijpe.2004.11.017
Megala N., Jawahar N. (2006) Genetic algorithm and hopfield neural network for a dynamic lot sizing problem. International Advanced Manufacturing Technologies 27: 1178–1191. doi:10.1007/s00170-004-2306-1
Moon I.K., Cha B.C., Bae H.C. (2006) Hybrid genetic algorithm for group technology economic lot scheduling problem. International Journal of Production Research 44(21): 4551–4568. doi:10.1080/00207540500534405
Moon I., Silver E.A., Choi S. (2002) Hybrid genetic algorithm for the economic lot-scheduling problem. International Journal of Production Research 40(4): 809–824. doi:10.1080/00207540110095222
Ozdamar L., Barbarosoglu G. (1999) Hybrid heuristics for the multi-stage capacitated lot sizing and loading problem. The Journal of the Operational Research Society 50: 810–825. doi:10.2307/3010340
Ozdamar L., Birbil S.I. (1998) Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions. European Journal of Operational Research 110: 525–547. doi:10.1016/S0377-2217(97)00269-5
Ozdamar L., Birbil S.I., Portmann M.C. (2002) Technical note: New results for the capacitated lot sizing problem with overtime decisions and setup times. Production Planning and Control 13: 2–10. doi:10.1080/09537280110049272
Ozdamar L., Bozyel M.A. (2000) Capacitated lot sizing problem with overtime decisions and setup times. IIE Transactions 32(11): 1043–1057 Institute of Industrial Engineers
Pitakaso R., Almeder C., Doerner K.F., Hartl R.F. (2007) A MAX-MIN ant system for unconstrained multi level lot-sizing problems. Computers & Operations Research, 34(9): 2533–2552. doi:10.1016/j.cor.2005.09.022
Prasad P.S.S., Chetty O.V.K. (2001) Multi-level lot sizing with a genetic algorithm under fixed and rolling horizons. International Journal of Manufacturing Technology 18: 520–527. doi:10.1007/s001700170045
Raidl, & Gunther, R. (2006). A unified view on hybrid meta-heuristics. Lecture Notes in Computer, Hybrid Meta-heuristics—Third International Workshop, HM 2006. Proceedings, Vol. 4030, pp. 1–12.
Sarker R., Newton C. (2002) A genetic algorithm for solving economic lot size scheduling problem. Computers & Industrial Engineering 42: 189–198. doi:10.1016/S0360-8352(02)00027-X
Srinivas M., Patnaik L.M. (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics 24(4): 656–667. doi:10.1109/21.286385
Staggemeier, A. T., & Clark, A. R. (2001). A Survey of Lot-sizing and scheduling models. Presented at the Proceedings of 23rd Annual Symposium of the Brazilian Operational Research Society.
Tang O. (2004) Simulated annealing in lot sizing problems. International Journal of Production Economics 88(2): 173–181. doi:10.1016/j.ijpe.2003.11.006
Tempelmeier H., Helber S. (1994) Heuristic for dynamic multi-item multi-level capacitated lot sizing for general product structures. European Journal of Operational Research 75(2): 296–311. doi:10.1016/0377-2217(94)90076-0
Yao M.J., Huang J.X. (2005) Solving the economic lot scheduling problem with deteriorating items using genetic algorithms. Journal of Food Engineering 70: 309–322. doi:10.1016/j.jfoodeng.2004.05.077
Wagner H.M., Whitin T.M. (1958) Dynamic version of the economic lot size model. Management Science 5(1): 89–96
Wolsey L.A. (1995) Progress with single-item lot-sizing. European Journal of Operational Research 86: 395–401. doi:10.1016/0377-2217(94)00341-9
Xie J. (1995) An application of genetic algorithms for general dynamic lot sizing problems. Proceedings of Genetic Algorithms in Engineering Systems: Innovations and Applications 414: 82–87
Xie J., Dong J. (2002) Heuristic genetic algorithms for general capacitated lot sizing problems. Computers & Mathematics with Applications (Oxford, England) 44: 263–276. doi:10.1016/S0898-1221(02)00146-3
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guner Goren, H., Tunali, S. & Jans, R. A review of applications of genetic algorithms in lot sizing. J Intell Manuf 21, 575–590 (2010). https://doi.org/10.1007/s10845-008-0205-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-008-0205-2