Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Competence maps using agglomerative hierarchical clustering

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Knowledge management from a strategic planning point of view often requires having an accurate understanding of a firm’s or a nation’s competences in a given technological discipline. Knowledge maps have been used for the purpose of discovering the location, ownership and value of intellectual assets. The purpose of this article is to develop a new method for assessing national and firm-level competences in a given technological discipline. To achieve this goal, we draw a competence map by applying agglomerative hierarchical clustering on a sample of patents. Considering the top levels of the resulting dendrogram, each cluster represents one of the technological branches of nanotechnology and its children branches are those that are most technologically proximate. We also assign a label to each branch by extracting the most relevant words found in each of them. From the information about patents inventors’ cities, we are able to identify where the largest invention communities are located. Finally, we use information regarding patent assignees and identify the most productive firms. We apply our method to the case of the emerging and multidisciplinary Canadian nanotechnology industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albayrak Y. E., Erensal Y. C. (2009) Leveraging technological knowledge transfer by using fuzzy linear programming technique for multiattribute group decision making with fuzzy decision variables. Journal of Intelligent Manufacturing 20: 223–231

    Article  Google Scholar 

  • Albert R., Barabási A.-L. (2002) Statistical mechanics of complex networks. Review of Modern Physics 74: 47

    Article  Google Scholar 

  • Alencar M. S. M., Porter A. L., Antunes A. M. S. (2007) Nanopatenting patterns in relation to product life cycle. Technological Forecasting and Social Change 74(2007): 1661–1680

    Article  Google Scholar 

  • Amin A., Cohendet P. (2004) Architecture of knowledge: Firms, capabilities and communities. Oxford University Press, New York

    Book  Google Scholar 

  • Arthur W. B. (1989) Competing technologies, increasing returns, and lock-in by historical events. The Economic Journal, 99(394): 116–131

    Article  Google Scholar 

  • Barney J. B. (1991) Firm resources and sustained competitive advantage. Journal of Management, 17: 99–120

    Article  Google Scholar 

  • Basberg B. (1987) Patents and the measurement of technological change: A survey of the literature. Research Policy, 16(2–4): 131–141

    Article  Google Scholar 

  • Bassecoulard E., Lelu A., Zitta M. (2006) Mapping nanosciences by citation flows: A preliminary analysis. Scientometrics 70(3): 859–880

    Article  Google Scholar 

  • Berry M. J., Linoff G. S. (2004) Data mining techniques for marketing sales and customer relationship management. Wiley, London

    Google Scholar 

  • Borner K., Chen C., Boyack K. W. (2003) Visualizing knowledge domains. Annual Review of Information Science and Technology 37: 179–255

    Article  Google Scholar 

  • Boschma R., ter Wal A. J. (2007) Knowledge networks and innovative performance in an industrial district: The case of a footwear district in the South of Italy. Industry and Innovation, 14(2): 177–199

    Article  Google Scholar 

  • Burt R. S. (1992) Structural holes: The social structure of competition. Harvard University Press, Cambridge

    Google Scholar 

  • Cantner U., Graf H. (2006) The network of innovators in Jena: An application of social network analysis. Research Policy, 35: 463–480

    Article  Google Scholar 

  • Chen Y., Zhang G., Hu D., Fu C. (2007) Customer segmentation based on survival character. Journal of Intelligent Manufacturing 18(4): 513–517

    Article  Google Scholar 

  • Choudhary A. K., Harding J. A., Tiwari M. K. (2009) Data mining in manufacturing: A review based on the kind of knowledge. Journal of Intelligent Manufacturing 20(5): 501–521

    Article  Google Scholar 

  • Chryssolouris F., Mavrikios D., Xeromerites S., Georgoulias K. (2008) Manufacturing knowledge work: The European perspective. In: Bernard A., Tichkiewitch S. (eds) Methods and tools for effective knowledge life-cycle-management. Springer, Berlin, pp 213–225

    Chapter  Google Scholar 

  • CodePlex. (2011). http://nodexl.codeplex.com.

  • Cohen W., Levinthal D. (1990) Absorptive capacity: A new perspective on learning and innovation. Administration Science Quartely, 35: 128–152

    Article  Google Scholar 

  • David, P. A. (1985). Clio and the economics of QWERTY. The American Economic Review, 75(2), Papers and Proceedings of the Ninety-Seventh Annual Meeting of the American Economic Association, pp. 332–337.

  • Duflou J. R., Verhaegen P.-A. (2011) Systematic innovation through patent based product aspect analysis. CIRP Annals-Manufacturing Technology 60(1): 203–206

    Article  Google Scholar 

  • Feldman M. P. (1994) Knowledge complementarity and innovation. Small Business Economics, 6: 363–372

    Article  Google Scholar 

  • Fitzgibbons, K., & McNiven, C. (2006). Towards a nanotechnology statistical framework. In Blue sky indicators conference II.

  • GoogleBlog. (2011). http://googleblog.blogspot.com/2011/04/patents-and-innovation.html.

  • Granovetter M. (1973) The strength of weak ties. American Journal of Sociology, 78(6): 1360–1380

    Article  Google Scholar 

  • Grant, R. M. (1996) Toward a knowledge-based theory of the firm. Strategic Management Journal, 17, Special Issue: Knowledge and the Firm, pp. 109–122.

  • Hsu C., Babin G., Bouziane M., Cheung W., Rattner L., Rubenstein A., Yee L. (1994) The metadatabase approach to integrating and managing manufacturing information systems. Journal of Intelligent Manufacturing 5(5): 333–349

    Article  Google Scholar 

  • Kim Y. G., Suh J. H., Park S. C. (2008) Visualization of patent analysis for emergin technology. Expert Systems with Applications 34: 1804–1812

    Article  Google Scholar 

  • Malakooti B., Raman V. (2000) Clustering and selection of multiple criteria alternatives using unsupervised and supervised neural networks. Journal of Intelligent Manufacturing 11: 435–451

    Article  Google Scholar 

  • Manning C. D., Raghavan P., Schutze H. (2008) An introduction to information retrieval. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Matlab. (2009). www.mathworks.com/products/matlab/.

  • Mogoutov A., Kahane B. (2007) Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy 36: 893–903

    Article  Google Scholar 

  • Morrison A. (2008) Gatekeepers of knowledge within industrial districts: Who they are, how they interact. Regional Studies, 42(6): 817

    Article  Google Scholar 

  • Nahapiet J., Ghoshal S. (1998) Social capital, intellectual capital, and the organizational advantage. The Academy of Management Review, 23(2): 242–266

    Google Scholar 

  • Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change. Harvard University Press.

  • Newman M. E. J., Girvan M. (2004) Finding and evaluating community structure in networks. Physical Review E 69: 026113

    Article  Google Scholar 

  • Porter A. L., Youtie J., Shapira P., Schoeneck D. J. (2008) Refining search terms for nanotechnology. Journal of Nanoparticle Research 10: 715–728

    Article  Google Scholar 

  • Prahalad C. K., Hamel G. (1990) The core competence of the corporation. Harvard Business Review, 68(3): 79–91

    Google Scholar 

  • Rapid-I. (2011). http://rapid-i.com.

  • Schmoch, U., Heinze, T., Hinze, S., & Rangnow, R. (2003). Mapping excellence in science and technology across Europe: Nanoscience and nanotechnology, Centre for Science and Technology Studies.

  • Small H. (1999) Visualizing science by citation mapping. Journal of the American Society for Information Science 50(9): 799–813

    Article  Google Scholar 

  • Taskin H., Adali M. R. (2004) Technological intelligence and competitive strategies: An application study with fuzzy logic. Journal of Intelligent Manufacturing 15: 417–419

    Article  Google Scholar 

  • Teece D. J., Pisano G., Shuen A. (1997) Dynamic capabilities and strategic management. Strategic Management Journal, 18(7): 509–533

    Article  Google Scholar 

  • Tseng Y.-H., Lin C.-J., Lin Y.-I. (2007) Text mining techniques for patent analysis. Information Processing and Management 433: 1216–1247

    Article  Google Scholar 

  • USPTO. (2009). http://uspto.gov.

  • Wallace M. L., Gingras Y., Duhon R. (2009) A new approach for detecting scientific specialties from raw cocitation networks. Journal of the American Society for Information Science and Technology 60(2): 240–246

    Article  Google Scholar 

  • Wasserman F., Fraust K. (1994) Social network analysis: Methods and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Weiss S. M., Indurkhya N., Zhang T., Damerau F. J. (2005) Text mining: Predctive methods for analyzing unstructured information. Springer, Berlin

    Google Scholar 

  • Westphal I., Thoben K.-D., Seifert M. (2010) Managing collaboration performance to govern virtual organizations. Journal of Intelligent Manufacturing 21(3): 311–320

    Article  Google Scholar 

  • Wijnhoven F. (2008) Manufacturing knowledge work: The European perspective. In: Bernard A., Tichkiewitch S. (eds) Methods and tools for effective knowledge life-cycle-management. Springer, Berlin, pp 23–44

    Chapter  Google Scholar 

  • Zitt M., Bassecoulard E. (2006) Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing and Management 42: 1513–1531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Agard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barirani, A., Agard, B. & Beaudry, C. Competence maps using agglomerative hierarchical clustering. J Intell Manuf 24, 373–384 (2013). https://doi.org/10.1007/s10845-011-0600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-011-0600-y

Keywords