Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Assembly process optimization for reducing the dimensional error of antenna assembly with abundant rivets

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes a process optimization method to improve the dimensional precision of riveted assemblies. The method representation and investigation use an assembly with 1093 rivets yielded from the double curved reflector. Firstly the static and dynamic finite element (FE) models respectively represent the global large-scale assembly and the local riveting process. The dimensional precision is denoted by the root mean square (RMS) of the deformations of the key points selected from the static FE nodes. Then the quantitation between RMS and process parameters equates to the iterative static FE analyses interpolating the dynamic FE analysis result and the possible former static FE analysis result. Finally the integration of the genetic and ant colony algorithms optimizes the process parameters, i.e. the rivet upsetting directions (UDs) and the assembly sequence (AS). Investigation indicates (1) both the rivet UDs and AS are the main RMS influence factors; (2) the proposed method can efficiently optimize the specific process parameters for the large-scale assembly with abundant rivets; and (3) the effective optimization prefers to solve rivet UDs and AS step by step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The exported nodal deformations represent the influence of current riveting to the next riveting.

  2. k represents the maximum number of the already assembled corner.

  3. “Rigid link” and “Add” operations in red dashed block of Fig. 5 are forbidden, and “Load” operation is applied to all the corners. Thus k in Fig. 5 is out of use, and the integrated FE analysis codes for the dimensional analysis (red dashed block in Fig. 6) are reduced into one FE analysis.

References

  • Agnetis, A., & Macchiaroli, R. (1998). Modelling and optimization of the assembly process in a flexible cell for aircraft panel manufacturing. International Journal of Production Research, 36(3), 815–836.

    Article  Google Scholar 

  • Aman, F., Cheraghi, S. H., Krishnan, K. K., & Lankarani, H. (2013). Study of the impact of riveting sequence, rivet pitch, and gap between sheets on the quality of riveted lap joints using finite element method. The International Journal of Advanced Manufacturing Technology, 67, 545–562.

    Article  Google Scholar 

  • Blanchot, V., & Daidie, A. (2006). Riveted assembly modeling: Study and numerical characterisation of a riveting process. Journal of Materials Processing Technology, 180(1–3), 201–209.

    Article  Google Scholar 

  • Butterfield, J., Crosby, S., Curran, R., Price, M., Armstrong, C. G., Raghunathan, S., et al. (2007). Optimization of aircraft fuselage assembly process using digital manufacturing. Journal of Computing and Information Science in Engineering, 7, 269–275.

    Article  Google Scholar 

  • Cai, W. (2008). A new tolerance modeling and analysis methodology through a two-step linearization with applications in automotive body assembly. Journal of Manufacturing Systems, 27(1), 26–35.

    Article  Google Scholar 

  • Cai, W., Wang, P., & Yang, W. (2005). Assembly dimensional prediction for self-piercing riveted aluminum panels. International Journal of Machine Tools & Manufacture, 45, 695–704.

    Article  Google Scholar 

  • Ceglarek, D., Huang, W., Zhou, S., Ding, Y., Ramesh, K., & Zhou, Y. (2004). Time-based competition in manufacturing: Stream-of variation analysis (SOVA) methodology-review. International Journal of Flexible Manufacturing Systems, 16(1), 11–44.

    Article  Google Scholar 

  • Chase, K. W., & Greenwood, W. H. (1988). Design issues in mechanical tolerance analysis. ASME Manufacturing Review, 1(1), 50–59.

    Google Scholar 

  • Chen, Z., Vulliez, K., Ferlay, F., Martinez, A., Mollard, P., Hillairet, J., et al. (2015). Design and optimization of the WEST ICRH antenna front face components based on thermal and hydraulic analysis. Fusion Engineering and Design, 94, 82–89.

  • Chen, C. L. P. (1992). Design of a real-time AND/OR assembly scheduler on an optimization neural network. Jounrnal of Intelligent Manufacturing, 3, 251–261.

    Article  Google Scholar 

  • Cheng, H., Li, Y., Zhang, K., Mu, W., & Liu, B. (2011). Variation modeling of aeronautical thin-walled structures with multi-state riveting. Journal of Manufacturing Systems, 30(2), 101–115.

    Article  Google Scholar 

  • Cowper, G., & Symonds, P. (1957). Strain hardening and strain-rate effects in the impact loading of cantilever beams. Technical Report, Brown University Division of Applied Mathematics.

  • Dhaliwal, B. S., & Pattnaik, S. S. (2015). Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design. Neural Computing and Applications. doi:10.1007/s00521-015-1879-y.

  • Du, J., Bao, H., & Cui, C. (2014). Shape adjustment of cable mesh reflector antennas considering modeling uncertainties. Acta Astronautica, 97, 164–171.

    Article  Google Scholar 

  • Du, J., Zong, Y., & Bao, H. (2013). Shape adjustment of cable mesh antennas using sequential quadratic programming. Aerospace Science and Technology, 30, 26–32.

    Article  Google Scholar 

  • Estler, W. T., Edmundson, K. L., Peggs, G. N., & Parker, D. H. (2002). Large-scale metrology—An update. CIRP Annals Manufacturing Technology, 51(2), 587–609.

    Article  Google Scholar 

  • Huang, C. Y., & Huang, H. H. (2014). Process optimization of SnCuNi soldering material using artificial parametric design. Jounrnal of Intelligent Manufacturing, 25, 813–823.

    Article  Google Scholar 

  • Huang, W., & Kong, Z. (2008). Simulation and integration of geometric and rigid body kinematics errors for assembly variation analysis. Journal of Manufacturing Systems, 27(1), 36–44.

    Article  Google Scholar 

  • Huang, W., Lin, J., Bezdecny, M. R., Kong, Z., & Ceglarek, D. (2007). Stream-of-variation modeling I: A generic 3D variation model for rigid body assembly in single station assembly processes. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 129(4), 821–831.

    Article  Google Scholar 

  • Jiménez, P. (2013). Surney on assembly sequencing: A combinationrial and geometrical perspective. Jounrnal of Intelligent Manufacturing, 24, 235–250.

    Article  Google Scholar 

  • Lee, S., & Park, J. (1991). Neural computation for collision-free path planning. Jounrnal of Intelligent Manufacturing, 2, 315–326.

    Article  Google Scholar 

  • Lin, T. W., & Wang, C. H. (2012). A hybrid genetic algorithm to minimize the periodic preventive maintenance cost in a series-parallel system. Jounrnal of Intelligent Manufacturing, 23, 1225–1236.

    Article  Google Scholar 

  • Liu, Y. S., He, X. D., Shao, X. J., Liu, J., & Yue, Z. F. (2010). Analytical and experimental investigation of fatigue and fracture behaviors for anti-double dog-bone riveted joints. Engineering Failure Analysis, 17(6), 1447–1456.

    Article  Google Scholar 

  • Manes, A., Giglio, M., & Viganò, F. (2011). Effect of riveting process parameters on the local stress field of a T-joint. International Journal of Mechanical Sciences, 53, 1039–1049.

    Article  Google Scholar 

  • Masters, I., Fan, X., Roy, R., & Williams, D. (2011). Modelling distortion induced in an assembly by the self piercing rivet process. Proceedings of IMechE Part B Journal of Engineering Manufacture, 226, 300–312.

    Article  Google Scholar 

  • Ni, J., Tang, W., & Xing, Y. (2014b). A local-to-global dimensional error calculation framework for the riveted assembly using finite element analysis. Journal of Manufacturing Science and Engineering-Transactions of the ASME, in review of the revised version.

  • Ni, J., Wu, X., Zhao, Y., Qiu, X., Tang, W., Xing, Y., et al. (2013b). Method for determining direction of rivet upsetting of metal thin-wall riveting assembly involves utilizing discrete space optimization algorithm to minimize assembly deformation index. Chinese Patent CN103272982-A, filed May 16.

  • Ni, J., Tang, W., & Xing, Y. (2013a). A simple algebra for fault tree analysis of static and dynamic systems. IEEE Transactions on Reliability, 62(4), 846–861.

    Article  Google Scholar 

  • Ni, J., Tang, W., & Xing, Y. (2014a). Three-dimensional precision analysis with rigid and compliant motions for sheet metal assembly. The International Journal of Advanced Manufacturing Technology, 73, 805–819.

    Article  Google Scholar 

  • Ruze, J. (1952). The effect of aperture errors on the antenna radiation pattern. II Nuovo Cimento, 9(3 Supplement), 364–380.

    Article  Google Scholar 

  • Tanaka, H., & Natori, M. C. (2004). Shape control of space antennas consisting of cable networks. Acta Astronautica, 55(3–9), 519–527.

    Article  Google Scholar 

  • Wang, H., & Ceglarek, D. (2009). Variation propagation modeling and analysis at preliminary design phase for multi-station assembly systems. Assembly Automation, 29(2), 154–166.

    Article  Google Scholar 

  • Wang, Y., & Liu, J. H. (2010). Chaotic particle swarm optimization for assembly sequence planning. Robotics and Computer-Integrated Manufacturing, 26, 212–222.

    Article  Google Scholar 

  • Wang, H., Rong, Y., & Xiang, D. (2014). Mechanical assembly planning using ant colony optimization. Computer Aided Design, 47, 59–71.

    Article  Google Scholar 

  • Wang, C. H., & Tsai, S. W. (2014). Optimizing bi-objective imperfect preventive maintenance model for series-parall system using established hybrid genetic algorithm. Jounrnal of Intelligent Manufacturing, 25, 603–616.

    Article  Google Scholar 

  • Xiao, H., Li, Y., Zhang, K., Yu, J., Liu, Z., & Su, J. (2012). Multi-objective optimization method for automatic drilling and riveting sequence planning. Chinese Journal of Aeronautics, 25, 817–824.

  • Xu, X., & Luo, Y. Z. (2008). Multi-objective shape control of prestressed structures with genetic algorithms. Journal of Aerospace Engineering, 222(8), 1139–1147.

    Google Scholar 

  • Xu, X., & Luo, Y. Z. (2009). Non-linear displacement control of prestressed cable structures. Journal of Aerospace Engineering, 223(7), 1001–1007.

    Google Scholar 

  • Xu, L. D., Wang, C., Bi, Z., & Yu, J. (2012). AutoAssem: An automated assembly planning system for complex products. IEEE Transactions on Industrial Informatics, 8(3), 669–678.

    Article  Google Scholar 

  • You, Z. (1997). Displacement control of prestressed structures. Computer Methods in Applied Mechanics and Engineering, 144(1), 51–59.

    Article  Google Scholar 

  • Yousefi, M., Darus, A. N., Yousefi, M., & Hooshyar, D. (2015). Multi-stage thermal-economical optimization of compact heat exchangers: A new evolutionary-based design approach for real-world problems. Applied Thermal Engineering, 83, 71–80.

    Article  Google Scholar 

  • Yousefi, M., Yousefi, M., Hooshyar, D., & de Souza Oliveira, J. A. (2015). An evolutionary approach for solving the job shop scheduling problem in a service industry. International Journal of Advances in Intelligent Informatics, 1(1), 1–6.

    Article  Google Scholar 

  • Zacharia, P. T., & Nearchou, A. C. (2012). Multi-objective fuzzy assembly line balancing using genetic algorithms. Jounrnal of Intelligent Manufacturing, 23, 615–627.

    Article  Google Scholar 

  • Zhang, K., Cheng, H., & Li, Y. (2011). Riveting process modeling and simulating for deformation analysis of aircraft’s thin-walled sheet-metal parts. Chinese Journal of Aeronautics, 24(3), 369–377.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is financially supported by the Funds of Certain Ministry of China (Nos. 51318010102, 51318010103, 51318010404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Tang, W.C. & Xing, Y. Assembly process optimization for reducing the dimensional error of antenna assembly with abundant rivets. J Intell Manuf 29, 245–258 (2018). https://doi.org/10.1007/s10845-015-1105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1105-x

Keywords