Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The continuous development of metal additive manufacturing (AM) promises the flexible and customized production, spurring AM research towards end-use part fabrication rather than prototyping, but inability to well control process defects and variability has precluded the widespread applications of AM. To solve these issues, process monitoring and control is a powerful approach. Recently, a variety of monitoring methods have been proposed and integrated with metal AM machines, which enables a large volume of data to be collected during the process. However, the data analytics faces great challenges due to the complexity of the process, bringing difficulties on developing effective models for defects detection as well as feedback control to improve quality. To overcome these challenges, machine learning methods have been frequently employed in the model development. By using machine learning methods, the models can be built based on the collected dataset, while it is not necessary to fully understand the process. This paper reviews the applications of machine learning methods in metal powder-bed fusion process monitoring and control, illuminates the challenges to be solved, and outlooks possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ali, M. Z., Nasmus, S. M., Khan, S., Liang, X., Zhang, Yu., & Hu, T. (2019). Machine learning-based fault diagnosis for single-and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Transactions on Industry Applications, 55(3), 2378–2391.

    Article  Google Scholar 

  • Adnan, M., Lu, Y., Jones, A., & Cheng, F. T. (2019). Application of the Fog computing paradigm to additive manufacturing process monitoring and control. SSRN 3785854.

  • Baumgartl, H., Tomas, J., Buettner, R., & Merkel, M. (2020). A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Progress in Additive Manufacturing, 5(3), 277–285.

    Article  Google Scholar 

  • Berumen, S., Bechmann, F., Lindner, S., Kruth, J.-P., & Craeghs, T. (2010). Quality control of laser-and powder bed-based Additive Manufacturing (AM) technologies. Physics Procedia, 5, 617–622.

    Article  Google Scholar 

  • Bidare, P., Maier, R. R., Josef, B., Rainer, J., Shephard, J. D., & Moore, A. J. (2017). An open-architecture metal powder bed fusion system for in-situ process measurements. Additive Manufacturing, 16, 177–185.

    Article  Google Scholar 

  • Bisht, M., Ray, N., Verbist, F., & Coeck, S. (2018). Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion. Additive Manufacturing, 22, 302–306.

    Article  Google Scholar 

  • Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. (2019). Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Annals, 68(1), 451–454.

    Article  Google Scholar 

  • Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., & Knutsen, R. (2015). Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Additive Manufacturing, 5, 68–76.

    Article  Google Scholar 

  • Calta, N. P., Wang, J., Kiss, A. M., Martin, A. A., Depond, P. J., Guss, G. M., Thampy, V., Fong, A. Y., Weker, J. N., Stone, K. H., Tassone, C. J., Kramer, M. J., Toney, M. F., Van Buuren, A., & Matthews, M. J. (2018). An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Review of Scientific Instruments, 89(5), 055101.

    Article  Google Scholar 

  • Carroll, B. E., Palmer, T. A., & Beese, A. M. (2015). Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 87, 309–320.

    Article  Google Scholar 

  • Carter, L. N., Attallah, M. M., & Reed, R. C. (2012). Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking. Superalloys, 2012, 577–586.

    Article  Google Scholar 

  • Chen, D., Wang, P., Pan, Ri., Zha, C., Fan, J., Kong, S., Li, Na., Li, J., & Zeng, Z. (2021). Research on in situ monitoring of selective laser melting: A state of the art review. The International Journal of Advanced Manufacturing Technology, 113(11), 3121–3138.

    Article  Google Scholar 

  • Chen, Y., Zhang, K., Huang, J., Hosseini, S. R. E., & Li, Z. (2016). Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Materials & Design, 90, 586–594.

    Article  Google Scholar 

  • Cheng, B., Lei, J., & Xiao, H. (2019). A photoacoustic imaging method for in-situ monitoring of laser assisted ceramic additive manufacturing. Optics & Laser Technology, 115, 459–464.

    Article  Google Scholar 

  • Clijsters, S., Craeghs, T., Buls, S., Kempen, K., & Kruth, J.-P. (2014). In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. The International Journal of Advanced Manufacturing Technology, 75(5–8), 1089–1101.

    Article  Google Scholar 

  • Coeck, S., Bisht, M., Plas, J., & Verbist, F. (2019). Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data. Additive Manufacturing, 25, 347–356.

    Article  Google Scholar 

  • Craeghs, T., Bechmann, F., Berumen, S., & Kruth, J.-P. (2010). Feedback control of Layerwise Laser Melting using optical sensors. Physics Procedia, 5, 505–514.

    Article  Google Scholar 

  • Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T., & Rollett, A. D. (2019). Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science, 363(6429), 849–852.

    Article  Google Scholar 

  • DePond, P. J., Guss, G., Ly, S., Calta, N. P., Deane, D., Khairallah, S., & Matthews, M. J. (2018). In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Materials & Design, 154, 347–359.

    Article  Google Scholar 

  • Dryburgh, P., Patel, R., Pieris, D. M., Hirsch, M., Li, W., Sharples, S. D., Smith, R. J., Clare, A. T., & Clark, M. (2019). Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys. Paper presented at the AIP Conference Proceedings.

  • Duman, B., & Özsoy, K. (2022). A deep learning-based approach for defect detection in powder bed fusion additive manufacturing using transfer learning. Journal of the Faculty of Engineering, & University, Architecture of Gazi, 37(1), 361–375.

    Google Scholar 

  • Dunbar, Alexander J, Nassar, Abdalla R, Reutzel, Edward W, & Blecher, Jared J. (2016). A real-time communication architecture for metal powder bed fusion additive manufacturing. Paper presented at the Solid Freeform Fabrication Symposium (SFF), Austin, TX.

  • Edwards, P., O’conner, A., & Ramulu, M. (2013). Electron beam additive manufacturing of titanium components: Properties and performance. Journal of Manufacturing Science and Engineering, 135(6), 061016.

    Article  Google Scholar 

  • Eschner, N, Weiser, L, Häfner, B, & Lanza, G. (2018). Development of an acoustic process monitoring system for selective laser melting (SLM). Paper presented at the Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference Reviewed Paper.

  • Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials, & Design, 95, 431–445.

    Article  Google Scholar 

  • Fathizadan, S., Ju, F., & Lu, Y. (2021). Deep representation learning for process variation management in laser powder bed fusion. Additive Manufacturing, 42, 101961.

    Article  Google Scholar 

  • Fisher, B. A., Lane, B., Yeung, Ho., & Beuth, J. (2018). Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manufacturing Letters, 15, 119–121.

    Article  Google Scholar 

  • Foster, B, Reutzel, E, Nassar, A, Hall, B, Brown, S, & Dickman, C. (2015). Optical, layerwise monitoring of powder bed fusion. Paper presented at the Solid Freeform Fabrication Symposium, Austin, TX, Aug.

  • Furumoto, T., Ueda, T., Alkahari, M. R., & Hosokawa, A. (2013). Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera. CIRP Annals, 62(1), 223–226.

    Article  Google Scholar 

  • Gaikwad, A., Giera, B., Guss, G. M., Forien, J.-B., Matthews, M. J., & Rao, P. (2020). Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion–a single-track study. Additive Manufacturing, 36, 101659.

    Article  Google Scholar 

  • Gaikwad, A., Yavari, R., Montazeri, M., Cole, K., Bian, L., & Rao, P. (2020). Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults. IISE Transactions, 52(11), 1204–1217.

    Article  Google Scholar 

  • Garanger, K., Khamvilai, T., & Feron, E. (2020). Validating feedback control to meet stiffness requirements in additive manufacturing. IEEE Transactions on Control Systems Technology, 28(5), 2053–2060.

    Article  Google Scholar 

  • Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R., & Phoha, S. (2018). Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 21, 517–528.

    Article  Google Scholar 

  • Gökhan Demir, A., De Giorgi, C., & Previtali, B. (2018). Design and implementation of a multisensor coaxial monitoring system with correction strategies for selective laser melting of a maraging steel. Journal of Manufacturing Science, & Engineering 140(4), 041003.

  • Gong, H., Gu, H., Zeng, K., Dilip, J., Deepankar, P., Stucker, B., Christiansen, D., Beuth, J., & Lewandowski, J. J. (2014). Melt pool characterization for selective laser melting of Ti–6Al–4V pre-alloyed powder. Paper presented at the Solid freeform fabrication symposium.

  • Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87–98.

    Article  Google Scholar 

  • Grasso, M., Laguzza, V., Semeraro, Q., & Colosimo, B. M. (2017). In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. Journal of Manufacturing Science, & Engineering. 139(5).

  • Grasso, M., & Colosimo, B. M. (2017). Process defects and in situ monitoring methods in metal powder bed fusion: A review. Measurement Science, & Technology, 4, 044005.

    Article  Google Scholar 

  • Grasso, M., Demir, A. G., Previtali, B., & Colosimo, B. M. (2018). In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robotics and Computer-Integrated Manufacturing, 49, 229–239.

    Article  Google Scholar 

  • Grasso, M., Gallina, F., & Colosimo, B. M. (2018). Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing. Procedia CIRP, 75, 103–107.

    Article  Google Scholar 

  • Grasso, M. L. G., Remani, A., Dickins, A., Colosimo, B. M., & Leach, R. K. (2021). In-situ measurement and monitoring methods for metal powder bed fusion—an updated review. Measurement Science, & Technology, 32, 112001.

    Article  Google Scholar 

  • Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., & Stucker, B. (2013). Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. Paper presented at the 2013 solid freeform fabrication symposium.

  • Han, X., Zhu, H., Nie, X., Wang, G., & Zeng, X. (2018). Investigation on selective laser melting AlSi10Mg cellular lattice strut: Molten pool morphology, surface roughness and dimensional accuracy. Materials, 11(3), 392.

    Article  Google Scholar 

  • Hojjatzadeh, S. M., Parab, H., Niranjan D, Yan, Wentao, Guo, Qilin, Xiong, Lianghua, Zhao, Cang, Qu, L., Escano, L. I., Xiao, X., Fezzaa, Kamel, Everhart, W., Sun, T., Chen, L. (2019). Pore elimination mechanisms during 3D printing of metals. Nature Communications, 10(1), 3088.

  • Hrabe, N., & Quinn, T. (2013). Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Materials Science and Engineering: A, 573, 271–277.

    Article  Google Scholar 

  • Imani, F., Chen, R., Diewald, E., Reutzel, E., & Yang, H. (2019). Deep learning of variant geometry in layerwise imaging profiles for additive manufacturing quality control. Journal of Manufacturing Science and Engineering, 141(11), 1–16.

    Article  Google Scholar 

  • Jayasinghe, S., Paoletti, P., Sutcliffe, C., Dardis, J., Jones, N., & Green, P. L. (2021). Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements. Progress in Additive Manufacturing, 7(2), 143–160.

    Article  Google Scholar 

  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.

    Article  Google Scholar 

  • Kalms, M., Narita, R., Thomy, C., Vollertsen, F., & Bergmann, R. B. (2019). New approach to evaluate 3D laser printed parts in powder bed fusion-based additive manufacturing in-line within closed space. Additive Manufacturing, 26, 161–165.

    Article  Google Scholar 

  • Kanko, J. A., Sibley, A. P., & Fraser, J. M. (2016). In situ morphology-based defect detection of selective laser melting through inline coherent imaging. Journal of Materials Processing Technology, 231, 488–500.

    Article  Google Scholar 

  • Karniadakis, G. E., Kevrekidis, I. G., Lu, Lu., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440.

    Article  Google Scholar 

  • Kasperovich, G., Haubrich, J., Gussone, J., & Requena, G. (2016). Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Materials, & Design, 105, 160–170.

    Article  Google Scholar 

  • Kats, D., Wang, Z., Gan, Z., Liu, W. K., Wagner, G. J., & Lian, Y. (2022). A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Computational Materials Science, 202, 110958.

    Article  Google Scholar 

  • Khairallah, S. A., Anderson, A. T., Rubenchik, A., & King, W. E. (2016a). Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia, 108, 36–45.

    Article  Google Scholar 

  • Khanzadeh, M., Chowdhury, S., Marufuzzaman, M., Tschopp, M. A., & Bian, L. (2018). Porosity prediction: Supervised-learning of thermal history for direct laser deposition. Journal of Manufacturing Systems, 47, 69–82.

    Article  Google Scholar 

  • Khanzadeh, M., Chowdhury, S., Tschopp, M. A., Doude, H. R., Marufuzzaman, M., & Bian, L. (2019). In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions, 51(5), 437–455.

    Article  Google Scholar 

  • Kleszczynski, S., Zur Jacobsmühlen, J., Sehrt, J., & Witt, G. (2012). Error detection in laser beam melting systems by high resolution imaging. Paper presented at the Proceedings of the Solid Freeform Fabrication Symposium.

  • Knaak, C., Masseling, L., Duong, E., Abels, P., & Gillner, A. (2021). Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning. IEEE Access, 9, 55214–55231.

    Article  Google Scholar 

  • Koester, Lucas W, Taheri, Hossein, Bigelow, Timothy A, Bond, Leonard J, & Faierson, Eric J. (2018). In-situ acoustic signature monitoring in additive manufacturing processes. Paper presented at the AIP Conference Proceedings.

  • Koga, S., Krstic, M., & Beaman, J. (2020). Laser Sintering Control for Metal Additive Manufacturing by PDE Backstepping. IEEE Transactions on Control Systems Technology, 28(5), 1928–1939.

    Article  Google Scholar 

  • Kok, Y., Tan, X. P., Wang, P., Nai, M. L. S., Loh, N. H., Liu, E., & Tor, S. B. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials & Design, 139, 565–586.

    Article  Google Scholar 

  • Krauss, H., Zeugner, T., & Zaeh, M. F. (2014). Layerwise monitoring of the selective laser melting process by thermography. Physics Procedia, 56, 64–71.

    Article  Google Scholar 

  • Kriczky, D. A., Irwin, J., Reutzel, E. W., Michaleris, P., Nassar, A. R., & Craig, J. (2015). 3D spatial reconstruction of thermal characteristics in directed energy deposition through optical thermal imaging. Journal of Materials Processing Technology, 221, 172–186.

    Article  Google Scholar 

  • Kruth, J.-P., Mercelis, P., Van Vaerenbergh, J., & Craeghs, T. (2007). Feedback control of selective laser melting. Paper presented at the Proceedings of the 3rd international conference on advanced research in virtual and rapid prototyping.

  • Kwon, O., Kim, H. G., Kim, W., Kim, G.-H., & Kim, K. (2020). A convolutional neural network for prediction of laser power using melt-pool images in laser powder bed fusion. IEEE Access, 8, 23255–23263.

    Article  Google Scholar 

  • Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., & Maier, H. J. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48, 300–307.

    Article  Google Scholar 

  • Leung, C. L., Alex, M., Sebastian, A., Robert, C., Towrie, M., Withers, P. J., & Lee, P. D. (2018). In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nature Communications, 9(1), 1355.

    Article  Google Scholar 

  • Li, J., Zhou, Q., Huang, X., Li, M., & Cao, L. (2021). In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting. Journal of Intelligent Manufacturing 1–15.

  • Li, Z., Liu, X., Wen, S., He, P., Zhong, K., Wei, Q., Shi, Y., & Liu, S. (2018). In situ 3d monitoring of geometric signatures in the powder-bed-fusion additive manufacturing process via vision sensing methods. Sensors, 18(4), 1180.

    Article  Google Scholar 

  • Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., & Bigot, S. (2020). Digital tin-enabled collaborative data management for metal additive manufacturing systems. Journal of Manufacturing Systems, 62, 857–874.

  • Liu, R., Liu, S., & Zhang, X. (2021). A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing. The International Journal of Advanced Manufacturing Technology, 113(7), 1943–1958.

    Article  Google Scholar 

  • Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.

    Article  Google Scholar 

  • Ly, S., Rubenchik, A. M., Khairallah, S. A., Guss, G., & Matthews, M. J. (2017). Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Scientific Reports, 7(1), 4085.

    Article  Google Scholar 

  • Mahmoudi, M., Ezzat, A. A., & Elwany, A. (2019). Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing. Journal of Manufacturing Science and Engineering, 141(3), 031002.

    Article  Google Scholar 

  • Mani, M., Feng, S., Lane, B., Donmez, A., Moylan, S., & Fesperman, R. (2015). Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. In Additive manufacturing handbook. Tayor & Francis.

  • Matthews, M. J., Guss, G., Khairallah, S. A., Rubenchik, A. M., Depond, P. J., & King, W. E. (2016). Denudation of metal powder layers in laser powder bed fusion processes. Acta Materialia, 114, 33–42.

    Article  Google Scholar 

  • McCann, R., Obeidi, M. A., Hughes, C., McCarthy, É., Egan, D. S., Vijayaraghavan, R. K., Joshi, A. M., Garzon, V. A., Dowling, T. P., McNally, P. J., & Brabazon, D. (2021). In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Additive Manufacturing, 45, 102058.

    Article  Google Scholar 

  • Mercelis, P., & Kruth, J.-P. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254–265.

    Article  Google Scholar 

  • Mondal, S., Gwynn, D., Ray, A., & Basak, A. (2020). Investigation of Melt Pool Geometry Control in Additive Manufacturing Using Hybrid Modeling. Metals, 10(5), 683.

    Article  Google Scholar 

  • Montazeri, M., Nassar, A. R., Dunbar, A. J., & Rao, P. (2020). In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Transactions, 52(5), 500–515.

    Article  Google Scholar 

  • Montazeri, M., & Rao, P. (2018). Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach. Journal of Manufacturing Science, & Engineering. 140(9), 091002.

  • Mousa, A. A. (2016). Experimental investigations of curling phenomenon in selective laser sintering process. Rapid Prototyping Journal, 22, 405–415.

    Article  Google Scholar 

  • Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., Hernandez, D. H., Martinez, E., Medina, F., & Wicker, R. B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 20–32.

    Article  Google Scholar 

  • Nassar, A. R., Gundermann, M. A., Reutzel, E. W., Guerrier, P., Krane, M. H., & Weldon, M. J. (2019). Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing. Scientific Reports, 9(1), 5038.

    Article  Google Scholar 

  • O’Loughlin, S., Dutton, B., Semaj, G., Snell, E., Rindler, J., & Groeber, M. A. (2021). Towards In-process Prediction of Voids in Laser Powder Bed Fusion. JOM Journal of the Minerals Metals and Materials Society, 73(11), 3240–3249.

    Article  Google Scholar 

  • Okaro, I. A., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P., & Green, P. L. (2019). Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Additive Manufacturing, 27, 42–53.

    Article  Google Scholar 

  • Pagani, L., Grasso, M., Scott, P. J., & Colosimo, B. M. (2020). Automated layerwise detection of geometrical distortions in laser powder bed fusion. Additive Manufacturing, 36, 101435.

    Article  Google Scholar 

  • Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2021). Semi-Supervised Monitoring of Laser Powder Bed Fusion Process Based on Acoustic Emissions, 16(4), 481–497.

    Google Scholar 

  • Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2022). Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. Journal of Materials Processing Technology, 303, 117531.

    Article  Google Scholar 

  • Paul, R., Anand, S., & Gerner, F. (2014). Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. Journal of Manufacturing Science and Engineering, 136(3), 031009.

    Article  Google Scholar 

  • Qiu, C., Panwisawas, C., Ward, M., Basoalto, H. C., Brooks, J. W., & Attallah, M. M. (2015). On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia, 96, 72–79.

    Article  Google Scholar 

  • Repossini, G., Laguzza, V., Grasso, M., & Colosimo, B. M. (2017). On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion. Additive Manufacturing, 16, 35–48.

    Article  Google Scholar 

  • Riaño, C., Rodriguez, E., & Alvares, A. J. (2019). A Closed-Loop Inspection Architecture for Additive Manufacturing Based on STEP Standard. IFAC-PapersOnLine, 52(13), 2782–2787.

    Article  Google Scholar 

  • Rieder, H., Dillhöfer, A., Spies, M., Bamberg, J., & Hess, T. (2015). Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting. Paper presented at the AIP Conference Proceedings.

  • Rodriguez, E., Mireles, J., Terrazas, C. A., Espalin, D., Perez, M. A., & Wicker, R. B. (2015). Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography. Additive Manufacturing, 5, 31–39.

    Article  Google Scholar 

  • Sammons, P. M., Gegel, M. L., Bristow, D. A., & Landers, R. G. (2018). Repetitive process control of additive manufacturing with application to laser metal deposition. IEEE Transactions on Control Systems Technology, 27(2), 566–575.

    Article  Google Scholar 

  • Scime, L., & Beuth, J. (2018a). Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Additive Manufacturing, 19, 114–126.

    Article  Google Scholar 

  • Scime, L., & Beuth, J. (2018b). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273–286.

    Article  Google Scholar 

  • Scime, L., & Beuth, J. (2019). Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 25, 151–165.

    Article  Google Scholar 

  • Seifi, S. H., Tian, W., Doude, H., Tschopp, M. A., & Bian, L. (2019). Layer-wise modeling and anomaly detection for laser-based additive manufacturing. Journal of Manufacturing Science & Engineering, 141(8), 081013.

  • Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.

  • Sharratt, B. M. (2015). Non-destructive techniques and technologies for qualification of additive manufactured parts and processes. Literature Review.

  • Shevchik, S. A., Kenel, C., Leinenbach, C., & Wasmer, K. (2018). Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Additive Manufacturing, 21, 598–604.

    Article  Google Scholar 

  • Slotwinski, J. A., Garboczi, E. J., & Hebenstreit, K. M. (2014). Porosity measurements and analysis for metal additive manufacturing process control. Journal of Research of the National Institute of Standards and Technology, 119, 494.

    Article  Google Scholar 

  • Smith, R. J., Hirsch, M., Patel, R., Li, W., Clare, A. T., & Sharples, S. D. (2016). Spatially resolved acoustic spectroscopy for selective laser melting. Journal of Materials Processing Technology, 236, 93–102.

    Article  Google Scholar 

  • Snow, Z., Diehl, B., Reutzel, E. W., & Nassar, A. (2021). Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. Journal of Manufacturing Systems, 59, 12–26.

    Article  Google Scholar 

  • Spears, T. G., & Gold, S. A. (2016). In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials, & Innovation, Manufacturing, 5(1), 16–40.

    Article  Google Scholar 

  • Sterling, A. J., Torries, B., Shamsaei, N., Thompson, S. M., & Seely, D. W. (2016). Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V. Materials Science and Engineering: A, 655, 100–112.

    Article  Google Scholar 

  • Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., John, K., & Nenadic, G. (2018). Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy, 133, 620–635.

  • Strano, G., Hao, L., Everson, R. M., & Evans, K. E. (2013). Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology, 213(4), 589–597.

    Article  Google Scholar 

  • Sun, S.-H., Koizumi, Y., Kurosu, S., Li, Y.-P., & Chiba, A. (2015). Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Materialia, 86, 305–318.

    Article  Google Scholar 

  • Taheri, H., Koester, L. W., Bigelow, T. A., Faierson, E. J., & Bond, L. J. (2019). In situ additive manufacturing process monitoring with an acoustic technique: Clustering performance evaluation using K-means algorithm. Journal of Manufacturing Science & Engineering, 141(4), 041011.

  • Tammas-Williams, S., Zhao, H., Léonard, F., Derguti, F., Todd, I., & Prangnell, P. B. (2015). XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting. Materials Characterization, 102, 47–61.

    Article  Google Scholar 

  • Tang, L., & Landers, R. G. (2011). Layer-to-layer height control for laser metal deposition process. Journal of Manufacturing Science & Engineering, 133(2), 021009.

  • Tapia, G., & Elwany, A. (2014). A review on process monitoring and control in metal-based additive manufacturing. Journal of Manufacturing Science & Engineering, 136(6), 60801–60811.

  • Technologies, ASTM Committee F42 on Additive Manufacturing, & Terminology, ASTM Committee F42 on Additive Manufacturing Technologies. (2012). Subcommittee F42. 91. Standard terminology for additive manufacturing technologies: ASTM International.

  • Thomas, D. (2009). The development of design rules for selective laser melting. University of Wales.

  • Tian, Q., Guo, S., & Guo, Y. (2020). A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition. CIRP Annals, 69(1), 205–208.

    Article  Google Scholar 

  • Tucho, W. M., Cuvillier, P., Sjolyst-Kverneland, A., & Hansen, V. (2017). Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Materials Science and Engineering: A, 689, 220–232.

    Article  Google Scholar 

  • van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., & Sas, P. (2012). Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting. Advanced Engineering Materials, 14(1–2), 92–97.

    Article  Google Scholar 

  • Wang, Di., Yang, Y., Yi, Z., & Su, X. (2013). Research on the fabricating quality optimization of the overhanging surface in SLM process. The International Journal of Advanced Manufacturing Technology, 65(9–12), 1471–1484.

    Article  Google Scholar 

  • Wang, N., Mokadem, S., Rappaz, M., & Kurz, W. (2004). Solidification cracking of superalloy single-and bi-crystals. Acta Materialia, 52(11), 3173–3182.

    Article  Google Scholar 

  • Wang, R., Cheung, C. F., Wang, C., & Cheng, M. N. (2022). Deep learning characterization of surface defects in the selective laser melting process. Computers in Industry, 140, 103662.

    Article  Google Scholar 

  • Wang, Z., Palmer, T. A., & Beese, A. M. (2016). Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Materialia, 110, 226–235.

    Article  Google Scholar 

  • Wasmer, K., Le-Quang, T., Meylan, B., & Shevchik, S. A. (2019). In situ quality monitoring in AM using acoustic emission: A reinforcement learning approach. Journal of Materials Engineering, & Performance, 28(2), 666–672.

    Article  Google Scholar 

  • Waterman, N. A., & Dickens, P. (1994). Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture, 1(3), 27–36.

    Article  Google Scholar 

  • Wei, X., Xu, M., Wang, Q., Zhang, M., Liu, W., Xu, J., Chen, J., Lu, H., & Yu, C. (2016). Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay. Materials & Design, 110, 90–98.

    Article  Google Scholar 

  • Weingarten, C., Buchbinder, D., Pirch, N., Meiners, W., Wissenbach, K., & Poprawe, R. (2015). Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology, 221, 112–120.

    Article  Google Scholar 

  • Xiong, J., Liu, G., & Pi, Y. (2019). Increasing stability in robotic GTA-based additive manufacturing through optical measurement and feedback control. Robotics, & Manufacturing, Computer-Integrated, 59, 385–393.

    Article  Google Scholar 

  • Xiong, J., Yin, Z., & Zhang, W. (2016). Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. Journal of Materials Processing Technology, 233, 100–106.

    Article  Google Scholar 

  • Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., & Bian, L. (2017). Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel. International Journal of Fatigue, 94, 218–235.

    Article  Google Scholar 

  • Yadroitsev, I., & Smurov, I. (2011). Surface morphology in selective laser melting of metal powders. Physics Procedia, 12, 264–270.

    Article  Google Scholar 

  • Yang, C., Liu, J., Zeng, Y., & Xie, G. (2019). Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model. Renewable Energy, 133, 433–441.

    Article  Google Scholar 

  • Yang, J., Li, F., Wang, Z., & Zeng, X. (2015). Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. Journal of Materials Processing Technology, 225, 229–239.

    Article  Google Scholar 

  • Yao, B., Imani, F., & Yang, H. (2018). Markov decision process for image-guided additive manufacturing. IEEE Robotics, & Letters, Automation, 3(4), 2792–2798.

    Article  Google Scholar 

  • Yasa, Evren, Deckers, Jan, Craeghs, Tom, Badrossamay, Mohsen, & Kruth, Jean-Pierre. (2009). Investigation on occurrence of elevated edges in selective laser melting. Paper presented at the International Solid Freeform Fabrication Symposium, Austin, TX, USA.

  • Yazdi, R. M., Imani, F., & Yang, H. (2020). A hybrid deep learning model of process-build interactions in additive manufacturing. Journal of Manufacturing Systems, 57, 460–468.

    Article  Google Scholar 

  • Ye, D., Hong, G. S., Zhang, Y., Zhu, K., & Fuh, J. Y. H. (2018). Defect detection in selective laser melting technology by acoustic signals with deep belief networks. The International Journal of Advanced Manufacturing Technology, 96(5), 2791–2801.

    Article  Google Scholar 

  • Yuan, B., Giera, B., Guss, G., Matthews, I., & McMains, S. (2019). Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting. Paper presented at the 2019 IEEE winter conference on applications of computer vision (WACV).

  • Zäh, M. F., & Lutzmann, S. (2010). Modelling and simulation of electron beam melting. Production Engineering, 4(1), 15–23.

    Article  Google Scholar 

  • Zhang, B., Ziegert, J., Farahi, F., & Davies, A. (2016). In situ surface topography of laser powder bed fusion using fringe projection. Additive Manufacturing, 12, 100–107.

    Article  Google Scholar 

  • Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018). Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems, 48, 78–86.

    Article  Google Scholar 

  • Zhang, L., Chen, X., Zhou, W., Cheng, T., Chen, L., Guo, Z., Han, B., & Lu, L. (2020). Digital twins for additive manufacturing: A state-of-the-art review. Applied Sciences, 10(23), 8350.

    Article  Google Scholar 

  • Zhang, Y., Hong, G. S., Ye, D., Zhu, K., & Fuh, J. Y. H. (2018). Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Materials & Design, 156, 458–469.

    Article  Google Scholar 

  • Zhang, Y., Soon, H. G., Ye, D., Fuh, J. Y. H., & Zhu, K. (2019). Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks. IEEE Transactions on Industrial Informatics, 16(9), 5769–5779.

    Article  Google Scholar 

  • Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., De Carlo, F., Chen, L., Rollett, A. D., & Sun, T. (2017). Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Scientific Reports, 7(1), 3602.

    Article  Google Scholar 

  • Zhong, M., Sun, H., Liu, W., Zhu, X., & He, J. (2005). Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scripta Materialia, 53(2), 159–164.

    Article  Google Scholar 

  • Zhou, Z., Huang, L., Shang, Y., Li, Y., Jiang, L., & Lei, Q. (2018). Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing. Materials & Design, 160, 1238–1249.

    Article  Google Scholar 

  • Zhu, Q., Liu, Z., & Yan, J. (2021). Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Computational Mechanics, 67(2), 619–635.

    Article  Google Scholar 

  • zur Jacobsmühlen, J., Kleszczynski, S., Schneider, D., & Witt, Gerd. (2013). High resolution imaging for inspection of laser beam melting systems. Paper presented at the 2013 IEEE international instrumentation and measurement technology conference (I2MTC).

  • zur Jacobsmühlen, J., Kleszczynski, S., Witt, G., & Merhof, D. (2014). Robustness analysis of imaging system for inspection of laser beam melting systems. Paper presented at the Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

Download references

Acknowledgements

Wentao Yan acknowledges the support by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP50121-0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yan, W. Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges. J Intell Manuf 34, 2557–2580 (2023). https://doi.org/10.1007/s10845-022-01972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-01972-7

Keywords