Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dependence Logic with a Majority Quantifier

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the extension of dependence logic \(\mathcal {D}\) by a majority quantifier \(\mathsf{M}\) over finite structures. We show that the resulting logic is equi-expressive with the extension of second-order logic by second-order majority quantifiers of all arities. Our results imply that, from the point of view of descriptive complexity theory, \(\mathcal {D}(\mathsf{M})\) captures the complexity class counting hierarchy. We also obtain characterizations of the individual levels of the counting hierarchy by fragments of \(\mathcal {D}(\mathsf{M})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramsky, S., & Väänänen, J. (2009). From IF to BI. Synthese, 167(2), 207–230.

    Article  Google Scholar 

  • Allender, E. (1999). The permanent requires large uniform threshold circuits. Chicago Journal of Theoretical Computer Science, 7, 19. (electronic).

    Google Scholar 

  • Andersson, A. (2002). On second-order generalized quantifiers and finite structures. Annals of Pure and Applied Logic, 115(1–3), 1–32.

    Article  Google Scholar 

  • Burtschick, H.-J., & Vollmer, H. (1998). Lindström quantifiers and leaf language definability. International Journal of Foundations of Computer Science, 9(3), 277–294.

    Article  Google Scholar 

  • Durand, A., Ebbing, J., Kontinen, J., & Vollmer, H. (2011). Dependence logic with a majority quantifier. In S. Chakraborty & A. Kumar (Eds.), IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011) (Vol. 13, pp. 252–263)., Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

    Google Scholar 

  • Ebbing, J. (2014). Complexity and expressivity of dependence logic extensions. PhD thesis, Leibniz Universität Hannover.

  • Ebbinghaus, H.-D., & Flum, J. (1999). Finite model theory perspectives in mathematical logic (2nd ed.). Heidelberg: Springer.

    Book  Google Scholar 

  • Engström, F. (2012). Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21(3), 299–324.

    Article  Google Scholar 

  • Engström, F., & Kontinen, J. (2013). Characterizing quantifier extensions of dependence logic. The Journal of Symbolic Logic, 78(1), 307–316.

    Article  Google Scholar 

  • Galliani, P. (2012). Inclusion and exclusion dependencies in team semantics—On some logics of imperfect information. Annals of Pure and Applied Logic, 163(1), 68–84.

    Article  Google Scholar 

  • Grädel, E., & Väänänen, J. A. (2013). Dependence and independence. Studia Logica, 101(2), 399–410.

    Article  Google Scholar 

  • Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinitistic Methods (Proceedings of the Symposium of Foundations of Mathematics, Warsaw, 1959) (pp. 167–183). Pergamon, Oxford.

  • Hintikka, J., & Sandu, G. (1989). Informational independence as a semantical phenomenon. In Logic, methodology and philosophy of science, VIII (Moscow, 1987), Vol 126 of Studies in Logic and the Foundations of Mathematics (pp. 571–589). North-Holland, Amsterdam.

  • Kontinen, J. (2006). The hierarchy theorem for second order generalized quantifiers. The Journal of Symbolic Logic, 71(1), 188–202.

    Article  Google Scholar 

  • Kontinen, J. (2009). A logical characterization of the counting hierarchy. ACM Transactions on Computational Logic (TOCL), 10(1), 7.

    Article  Google Scholar 

  • Kontinen, J. (2010). Definability of second order generalized quantifiers. Archive for Mathematical Logic, 49(3), 379–398.

    Article  Google Scholar 

  • Kontinen, J., & Niemistö, H. (2011). Extensions of MSO and the monadic counting hierarchy. Information and Computation, 209(1), 1–19.

    Article  Google Scholar 

  • Kontinen, J., & Szymanik, J. (2014). A characterization of definability of second-order generalized quantifiers with applications to non-definability. Journal of Computer and System Sciences, 80(6), 1152–1162.

    Article  Google Scholar 

  • Kontinen, J., & Väänänen, J. (2009). On definability in dependence logic. Journal of Logic, Language and Information, 18(3), 317–332.

    Article  Google Scholar 

  • Lindström, P. (1966). First order predicate logic with generalized quantifiers. Theoria, 32, 186–195.

    Google Scholar 

  • Lohmann, P., & Vollmer, H. (2013). Complexity results for modal dependence logic. Studia Logica, 101(2), 343–366.

    Article  Google Scholar 

  • Sevenster, M. (2009). Model-theoretic and computational properties of modal dependence logic. Journal of Logic and Computation, 19(6), 1157–1173.

    Article  Google Scholar 

  • Toda, S. (1991). PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5), 865–877.

    Article  Google Scholar 

  • Toda, S., & Watanabe, O. (1992). Polynomial time 1-turing reductions from #PH to #P. Theoretical Computer Science, 100(1), 205–221.

    Article  Google Scholar 

  • Torán, J. (1991). Complexity classes defined by counting quantifiers. Journal of the ACM, 38(3), 753–774.

    Article  Google Scholar 

  • Väänänen, J. (1999). Generalized quantifiers, an introduction. In Generalized quantifiers and computation (Aix-en-Provence, 1997), Vol 1754 of Lecture Notes in Computer Science (pp. 1–17). Berlin: Springer.

  • Väänänen, J. (2007). Dependence logic: A new approach to independence friendly logic, volume 70 of London mathematical society student texts. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Väänänen, J. (2008). Modal dependence logic. In K. Apt & R. van Rooij (Eds.), New perspectives on games and interaction, volume 5 of texts in logic and games (pp. 237–254). Amsterdam: Amsterdam University Press.

    Google Scholar 

  • Vollmer, H. (1999). Introduction to circuit complexity—-A uniform approach. In W. Brauer, G. Rozenberg & A. Salomaa (Eds.), Texts in Theoretical Computer Science—An EATCS Series. Berlin, Heidelberg: Springer.

  • Wagner, K. (1986). The complexity of combinatorial problems with succint input representation. Acta Informatica, 23, 325–356.

    Article  Google Scholar 

  • Yang, F. (2013). Expressing second-order sentences in intuitionistic dependence logic. Studia Logica, 101(2), 323–342.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Ebbing.

Additional information

The third author was supported by Grants 264917 and 275241 of the Academy of Finland. The second and fourth author were supported by a Grant from DAAD within the PPP programme. The fourth author was also supported by DFG Grant VO 630/6-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand, A., Ebbing, J., Kontinen, J. et al. Dependence Logic with a Majority Quantifier. J of Log Lang and Inf 24, 289–305 (2015). https://doi.org/10.1007/s10849-015-9218-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-015-9218-3

Keywords