Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using the Shape Gradient for Active Contour Segmentation: from the Continuous to the Discrete Formulation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A variational approach to image or video segmentation consists in defining an energy depending on local or global image characteristics, the minimum of which being reached for objects of interest. This study focuses on energies written as an integral on a domain of a function which can depend on this domain. The derivative of the energy with respect to the domain, the so-called shape derivative, is a function of a velocity field applied to the domain boundary. For a given, non-optimal domain, the velocity should be chosen such that the shape derivative is negative, thus indicating a way to deform the domain in order to decrease its energy. Minimizing the energy through an iterative deformation process is known as the active contour method. In the continuous framework, setting the velocity to the opposite of the gradient associated with the L 2 inner product is a common practice. In this paper, it is noted that the negativity of the shape derivative is not preserved, in general, by the discretization of this velocity required by implementation. In order to guarantee that the negativity condition holds in the discrete framework, it is proposed to choose the velocity as a linear combination of pre-defined velocities. This approach also gives more flexibility to the active contour process by allowing to introduce some a priori knowledge about the optimal domain. Some experimental results illustrate the differences between the classical and the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  2. Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: Calculus of variations or shape gradients? SIAM J. Appl. Math. 63, 2128–2154 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brigger, P., Hoeg, J., Unser, M.: B-spline snakes: A flexible tool for parametric contour detection. IEEE Trans. Image Process. 9, 1484–1496 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours. Numer. Math. 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Charpiat, G., Keriven, R., Pons, J.-P., Faugeras, O.: Designing spatially coherent minimizing flows for variational problems based on active contours. In: International Conference on Computer Vision, vol. 2, pp. 1403–1408 (2005)

  8. Chesnaud, C., Réfrégier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Pattern Anal. Mach. Intell. 21, 1145–1156 (1999)

    Article  Google Scholar 

  9. Cremers, D., Schnörr, C.: Motion competition: Variational integration of motion segmentation and shape regularization. In: DAGM-Symposium, Lecture Notes in Computer Science, vol. 2449, pp. 472–480 (2002)

  10. Cremers, D., Soatto, S.: Variational space-time motion segmentation. In: International Conference on Computer Vision, vol. 2, pp. 886–893 (2003)

  11. Debreuve, E., Barlaud, M., Aubert, G., Darcourt, J.: Space time segmentation using level set active contours applied to myocardial gated SPECT. IEEE Trans. Med. Imaging 20, 643–659 (2001)

    Article  Google Scholar 

  12. Debreuve, E., Barlaud, M., Marmorat, J.-P., Aubert, G.: Active contour segmentation with a parametric shape prior: link with the shape gradient. In: International Conference on Image Processing, pp. 1653–1656 (2006)

  13. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Analysis, Differential Calculus and Optimization. Advances in Design and Control. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  14. Delingette, H., Montagnat, J.: Shape and topology constraints on parametric active contours. Comput. Vis. Image Underst. 83, 140–171 (2001)

    Article  MATH  Google Scholar 

  15. Doǧan, G., Morin, P., Nochetto, R.H., Verani, M.: Finite element methods for shape optimization and applications. Preprint (2005)

  16. Gastaud, M., Barlaud, M., Aubert, G.: Combining shape prior and statistical features for active contour segmentation. IEEE Trans. Circuits Syst. Video Technol. 14, 726–734 (2004)

    Article  Google Scholar 

  17. Germain, O., Réfrégier, P.: Optimal snake-based segmentation of a random luminance target on a spatially disjoint background. Opt. Lett. 21, 1845–1847 (1996)

    Article  Google Scholar 

  18. Haug, E., Choi, K.K.: Methods of Engineering Mathematics. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  19. Hintermüller, M., Ring, W.: A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64, 442–467 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Isard, M., Blake, A.: CONDENSATION—Conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)

    Article  Google Scholar 

  21. Jacob, M., Blu, T., Unser, M.: A unifying approach and interface for spline-based snakes. In: International Symposium on Medical Imaging: Image Processing. Proc. SPIE, vol. 4322, pp. 340–347 (2001)

  22. Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Trans. Image Process. 13, 1231–1244 (2004)

    Article  Google Scholar 

  23. Jehan-Besson, S., Barlaud, M., Aubert, G.: DREAM2S: Deformable regions driven by an Eulerian accurate minimization method for image and video segmentation. Int. J. Comput. Vis. 53, 45–70 (2003)

    Article  Google Scholar 

  24. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–332 (1988)

    Article  Google Scholar 

  25. Li, H., Elmoataz, A., Fadili, J., Ruan, S.: Dual front evolution model and its application in medical imaging. In: Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science, vol. 3216, pp. 103–110 (2004)

  26. Li, H., Yezzi, A.: Local or global minima: flexible dual front active contours. In: Computer Vision for Biomedical Image Applications. Lecture Notes in Computer Science, vol. 3765, pp. 356–366 (2005)

  27. Lobregt, S., Viergever, M.: A discrete dynamic contour model. IEEE Trans. Med. Imaging 14, 12–23 (1995)

    Article  Google Scholar 

  28. Marmorat, J.-P.: Private communication on shape gradient in the context of a parametric active contour (2005)

  29. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Overgaard, N.C., Solem, J.E.: An analysis of variational alignment of curves in images. In: International Conference on Scale Space and PDE methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 480–491 (2005)

  31. Paragios, N., Deriche, R.: Geodesic active regions for motion estimation and tracking. In: International Conference on Computer Vision, vol. 1, pp. 688–694 (1999)

  32. Precioso, F., Barlaud, M., Blu, T., Unser, M.: Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Trans. Image Process. 14, 910–924 (2005)

    Article  Google Scholar 

  33. Robinson, D., Milanfar, P.: Fast local and global projection-based methods for affine motion estimation. J. Math. Imaging Vis. 18, 35–54 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Roy, T., Debreuve, E., Barlaud, M., Aubert, G.: Segmentation of a vector field: Dominant parameter and shape optimization. J. Math. Imaging Vis. 24, 259–276 (2006)

    Article  MathSciNet  Google Scholar 

  35. Schnörr, C.: Computation of discontinuous optical flow by domain decomposition and shape optimization. Int. J. Comput. Vis. 8, 153–165 (1992)

    Article  Google Scholar 

  36. Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992)

    MATH  Google Scholar 

  37. Solem, J.E., Overgaard, N.C.: A geometric formulation of gradient descent for variational problems with moving surfaces. In: International Conference on Scale Space and PDE methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 419–430 (2005)

  38. Taton, B., Lachaud, J.-O.: Deformable model with non-Euclidean metrics. In: European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 2352, pp. 438–453 (2002)

  39. Unal, G., Yezzi, A., Krim, H.: Information-theoretic active polygons for unsupervised texture segmentation. Int. J. Comput. Vis. 62, 199–220 (2005)

    Article  Google Scholar 

  40. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part I—Theory. IEEE Trans. Signal Process. 41, 821–833 (1993)

    Article  MATH  Google Scholar 

  41. Yezzi, A.J., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: International Conference on Computer Vision, vol. 2, pp. 898–903 (1999)

  42. Zhu, S., Ma, K.-K.: A new diamond search algorithm for fast block matching motion estimation. IEEE Trans. Image Process. 9, 287–290 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. Debreuve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debreuve, É., Gastaud, M., Barlaud, M. et al. Using the Shape Gradient for Active Contour Segmentation: from the Continuous to the Discrete Formulation. J Math Imaging Vis 28, 47–66 (2007). https://doi.org/10.1007/s10851-007-0012-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0012-y

Keywords