Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topological Properties of Thinning in 2-D Pseudomanifolds

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Preserving topological properties of objects during thinning procedures is an important issue in the field of image analysis. In the case of 2-D digital images (i.e. images defined on ℤ2) such procedures are usually based on the notion of simple point. In contrast to the situation in ℤn, n≥3, it was proved in the 80s that the exclusive use of simple points in ℤ2 was indeed sufficient to develop thinning procedures providing an output that is minimal with respect to the topological characteristics of the object. Based on the recently introduced notion of minimal simple set (generalising the notion of simple point), we establish new properties related to topology-preserving thinning in 2-D spaces which extend, in particular, this classical result to cubical complexes in 2-D pseudomanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995)

    Article  Google Scholar 

  2. Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of binary images: application to atlas-based skull segmentation. In: MICCAI’08, Proceedings, Part I. Lecture Notes in Computer Science, vol. 5241, pp. 211–218. Springer, Berlin (2008)

    Google Scholar 

  3. Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005)

    Article  Google Scholar 

  4. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  5. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 637–648 (2009)

    Article  Google Scholar 

  6. Davies, E.R., Plummer, A.P.: Thinning algorithms: a critique and a new methodology. Pattern Recognit. 14(16), 53–63 (1981)

    Article  MathSciNet  Google Scholar 

  7. Passat, N., Couprie, M., Bertrand, G.: Minimal simple pairs in the 3-D cubic grid. J. Math. Imaging Vis. 32(3), 239–249 (2008)

    Article  MathSciNet  Google Scholar 

  8. Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Mach. 17(1), 146–160 (1970)

    MathSciNet  MATH  Google Scholar 

  9. Rosenfeld, A.: Arcs and curves in digital pictures. J. Assoc. Comput. Mach. 20(1), 81–87 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Ronse, C.: A topological characterization of thinning. Theor. Comput. Sci. 43(1), 31–41 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rosenfeld, A.: A characterization of parallel thinning algorithms. Inf. Control 29(3), 286–291 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kong, T.Y., Litherland, R., Rosenfeld, A.: Problems in the topology of binary digital images. In: van Mill, J., Reed, G. (eds.) Open Problems in Topology, pp. 377–385. Elsevier, Amsterdam (1990). Chap. 23

    Google Scholar 

  13. Kovalesky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)

    Article  Google Scholar 

  14. Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary images. In: DGCI’97, Proceedings. Lecture Notes in Computer Science, vol.  1347, pp. 3–18. Springer, Berlin (1997)

    Google Scholar 

  15. Bertrand, G.: On critical kernels. C. R. Acad. Sci., Ser. Math. 1(345), 363–367 (2007)

    MathSciNet  Google Scholar 

  16. Bertrand, G., Couprie, M.: Two-dimensional parallel thinning algorithms based on critical kernels. J. Math. Imaging Vis. 31(1), 35–56 (2008)

    Article  MathSciNet  Google Scholar 

  17. Passat, N., Mazo, L.: An introduction to simple sets. Pattern Recognit. Lett. 30(15), 1366–1377 (2009)

    Article  Google Scholar 

  18. Giblin, P.: Graphs, Surfaces and Homology. Chapman and Hall, London (1981)

    MATH  Google Scholar 

  19. Bertrand, G.: On topological watersheds. J. Math. Imaging Vis. 22(23), 217–230 (2005)

    Article  MathSciNet  Google Scholar 

  20. Zeeman, E.C.: Seminar on Combinatorial Topology. IHES (1963)

  21. Kong, T.Y.: Minimal non-deletable sets and minimal non-codeletable sets in binary images. Theor. Comput. Sci. 406(12), 97–118 (2008)

    Article  MATH  Google Scholar 

  22. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recognit. Artif. Intell. 9(5), 813–844 (1995)

    Article  Google Scholar 

  23. Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. Lect. Mod. Math. II, 93–128 (1964)

    MathSciNet  Google Scholar 

  24. Maunder, C.R.F.: Algebraic Topology. Dover, New York (1996)

    Google Scholar 

  25. Mazo, L., Passat, N.: On 2-dimensional simple sets in n-dimensional cubic grids. Discrete Comput. Geom. (in press). doi:10.1007/s00454-009-9195-x

  26. Malgouyres, R., Lenoir, A.: Topology preservation within digital surfaces. Graph. Models 62, 71–84 (2000)

    Article  Google Scholar 

  27. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Mateo (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Passat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passat, N., Couprie, M., Mazo, L. et al. Topological Properties of Thinning in 2-D Pseudomanifolds. J Math Imaging Vis 37, 27–39 (2010). https://doi.org/10.1007/s10851-010-0190-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0190-x

Keywords