Abstract
Preserving topological properties of objects during thinning procedures is an important issue in the field of image analysis. In the case of 2-D digital images (i.e. images defined on ℤ2) such procedures are usually based on the notion of simple point. In contrast to the situation in ℤn, n≥3, it was proved in the 80s that the exclusive use of simple points in ℤ2 was indeed sufficient to develop thinning procedures providing an output that is minimal with respect to the topological characteristics of the object. Based on the recently introduced notion of minimal simple set (generalising the notion of simple point), we establish new properties related to topology-preserving thinning in 2-D spaces which extend, in particular, this classical result to cubical complexes in 2-D pseudomanifolds.
Similar content being viewed by others
References
Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995)
Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of binary images: application to atlas-based skull segmentation. In: MICCAI’08, Proceedings, Part I. Lecture Notes in Computer Science, vol. 5241, pp. 211–218. Springer, Berlin (2008)
Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005)
Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)
Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 637–648 (2009)
Davies, E.R., Plummer, A.P.: Thinning algorithms: a critique and a new methodology. Pattern Recognit. 14(16), 53–63 (1981)
Passat, N., Couprie, M., Bertrand, G.: Minimal simple pairs in the 3-D cubic grid. J. Math. Imaging Vis. 32(3), 239–249 (2008)
Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Mach. 17(1), 146–160 (1970)
Rosenfeld, A.: Arcs and curves in digital pictures. J. Assoc. Comput. Mach. 20(1), 81–87 (1973)
Ronse, C.: A topological characterization of thinning. Theor. Comput. Sci. 43(1), 31–41 (1986)
Rosenfeld, A.: A characterization of parallel thinning algorithms. Inf. Control 29(3), 286–291 (1975)
Kong, T.Y., Litherland, R., Rosenfeld, A.: Problems in the topology of binary digital images. In: van Mill, J., Reed, G. (eds.) Open Problems in Topology, pp. 377–385. Elsevier, Amsterdam (1990). Chap. 23
Kovalesky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)
Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary images. In: DGCI’97, Proceedings. Lecture Notes in Computer Science, vol. 1347, pp. 3–18. Springer, Berlin (1997)
Bertrand, G.: On critical kernels. C. R. Acad. Sci., Ser. Math. 1(345), 363–367 (2007)
Bertrand, G., Couprie, M.: Two-dimensional parallel thinning algorithms based on critical kernels. J. Math. Imaging Vis. 31(1), 35–56 (2008)
Passat, N., Mazo, L.: An introduction to simple sets. Pattern Recognit. Lett. 30(15), 1366–1377 (2009)
Giblin, P.: Graphs, Surfaces and Homology. Chapman and Hall, London (1981)
Bertrand, G.: On topological watersheds. J. Math. Imaging Vis. 22(23), 217–230 (2005)
Zeeman, E.C.: Seminar on Combinatorial Topology. IHES (1963)
Kong, T.Y.: Minimal non-deletable sets and minimal non-codeletable sets in binary images. Theor. Comput. Sci. 406(12), 97–118 (2008)
Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recognit. Artif. Intell. 9(5), 813–844 (1995)
Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. Lect. Mod. Math. II, 93–128 (1964)
Maunder, C.R.F.: Algebraic Topology. Dover, New York (1996)
Mazo, L., Passat, N.: On 2-dimensional simple sets in n-dimensional cubic grids. Discrete Comput. Geom. (in press). doi:10.1007/s00454-009-9195-x
Malgouyres, R., Lenoir, A.: Topology preservation within digital surfaces. Graph. Models 62, 71–84 (2000)
Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Mateo (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Passat, N., Couprie, M., Mazo, L. et al. Topological Properties of Thinning in 2-D Pseudomanifolds. J Math Imaging Vis 37, 27–39 (2010). https://doi.org/10.1007/s10851-010-0190-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-010-0190-x