Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Tuning of Adaptive Weight Depth Map Generation Algorithms

Exploratory Data Analysis and Design of Computer Experiments (DOCE)

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation are usually chosen empirically or based on unplanned experiments. Algorithms’ performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury’s standards. This work shows a systematic statistical approach including exploratory data analyses on over 14000 images and designs of experiments using 31 depth maps to measure the relative influence of the parameters and to fine-tune them based on the number of bad pixels. The implemented methodology improves the performance of adaptive weight based dense depth map algorithms. As a result, the algorithm improves from 16.78 to 14.48 % bad pixels using a classical exploratory data analysis of over 14000 existing images, while using designs of computer experiments with 31 runs yielded an even better performance by lowering bad pixels from 16.78 to 13 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Congote, J., Barandiaran, I., Barandiaran, J., Montserrat, T., Quelen, J., Ferrán, C., Mindan, P., Mur, O., Tarrés, F., Ruiz, O.: Real-time depth map generation architecture for 3D videoconferencing. In: 3DTV-CON, 2010, pp. 1–4 (2010)

    Google Scholar 

  2. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  3. Gong, M., Yang, R., Wang, L., Gong, M.: A performance study on different cost aggregation approaches used in real-time stereo matching. Int. J. Comput. Vis. 75, 283–296 (2007)

    Article  Google Scholar 

  4. Yoon, K., Kweon, I.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 650 (2006)

    Article  Google Scholar 

  5. Gu, Z., Su, X., Liu, Y., Zhang, Q.: Local stereo matching with adaptive support-weight, rank transform and disparity calibration. Pattern Recognit. Lett. 29, 1230–1235 (2008)

    Article  Google Scholar 

  6. Hosni, A., Bleyer, M., Gelautz, M., Rhemann, C.: Local stereo matching using geodesic support weights. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 2093–2096 (2009)

    Google Scholar 

  7. Wang, L., Gong, M., Gong, M., Yang, R.: How far can we go with local optimization in real-time stereo matching. In: Proceeding 3DPVT’06 Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pp. 129–136 (2006)

    Chapter  Google Scholar 

  8. Battiato, S., Curti, S., La Cascia, M., Scordato, E., Tortora, M.: Depth map generation by image classification. In: Proceeding of SPIE Electronic Imaging 2004. Three-Dimensional Image Capture and Applications VI, vol. 5302-13 (2004)

    Google Scholar 

  9. Battiato, S., Capra, A., Curti, S., La Cascia, M.: 3D stereoscopic pairs by depth-map image generation. In: IEEE 3DPVT’04, 2nd Int. Symp. on 3D Data Processing Visualization & Transmission, pp. 124–131 (2004)

    Google Scholar 

  10. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR IEEE, vol. 1, pp. 195–202 (2003)

    Google Scholar 

  11. Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Classification and evaluation of cost aggregation methods for stereo correspondence. In: CVPR IEEE, pp. 1–8 (2008)

    Google Scholar 

  12. Montgomery, D.C.: Design and Analysis of Experiments (2010). ISBN:978-0-470-88606-9

    Google Scholar 

  13. Daniel, C.: Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 1(4), 311–341 (1959)

    Article  MathSciNet  Google Scholar 

  14. Lenth, R.V.: Response-Surface methods in R, using rsm. J. Stat. Softw. 32(7), 1–17 (2009)

    Google Scholar 

  15. Hoyos, A., Congote, J., Barandiaran, I., Acosta, D., Ruiz, O.: Statistical tuning of adaptive-weight depth map algorithm. In: CAIP, pp. 563–572 (2011)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Administration Agency CDTI under project CENIT-VISION 2007-1007, the Colombian Administrative Department of Science, Technology, and Innovation; and the Colombian National Learning Service (COLCIENCIAS-SENA) grant No. 1216-479-22001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Congote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, D., Barandiaran, I., Congote, J. et al. Tuning of Adaptive Weight Depth Map Generation Algorithms. J Math Imaging Vis 47, 3–12 (2013). https://doi.org/10.1007/s10851-012-0366-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0366-7

Keywords