Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Directional Multiscale Processing of Images Using Wavelets with Composite Dilations

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

It is widely recognized that the performance of many image processing algorithms can be significantly improved by applying multiscale image representations with the ability to handle very efficiently directional and other geometric features. Wavelets with composite dilations offer a flexible and especially effective framework for the construction of such representations. Unlike traditional wavelets, this approach enables the construction of waveforms ranging not only over various scales and locations but also over various orientations and other orthogonal transformations. Several useful constructions are derived from this approach, including the well-known shearlet representation and new ones, introduced in this paper. In this work, we introduce and apply a novel multiscale image decomposition algorithm for the efficient digital implementation of wavelets with composite dilations. Due to its ability to handle geometric features efficiently, our new image processing algorithms provide consistent improvements upon competing state-of-the-art methods, as illustrated on a number of image denoising and image enhancement demonstrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Even though the shearlet system is not exactly an example of wavelets with composite dilations, it is closely related to this framework being defined as a union of two such systems [26, 34].

  2. Recall that an orthonormal basis is a special case of a Parseval frame; however, the elements of a Parseval frame need not be orthogonal.

  3. Some ideas of this construction were introduced by one of the authors and collaborators in [27].

References

  1. Bamberger, R.H., Smith, M.J.T.: A filter bank for directional decomposition of images: theory and design. IEEE Trans. Signal Process. 40(2), 882–893 (1992)

    Article  Google Scholar 

  2. Berenstein, C.A., Yger, A., Taylor, B.A.: Sur quelques formules explicites de deconvolution. J. Opt. 14, 75–82 (1983)

    Google Scholar 

  3. Berenstein, C.A., Yger, A.: Le problème de la déconvolution. J. Funct. Anal. 54(2), 113–160 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanchard, J.D.: Minimally supported frequency composite dilation wavelets. J. Fourier Anal. Appl. 15, 796–815 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blanchard, J.D.: Minimally supported frequency composite dilation Parseval frame wavelets. J. Geom. Anal. 19, 19–35 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blanchard, J.D., Krishtal, I.A.: Matricial filters and crystallographic composite dilation wavelets. Math. Comput. 81, 905–922 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861–899 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 56, 216–266 (2004)

    Google Scholar 

  9. Chang, S.G., Yu, B., Vetterli, M.: Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chung, J., Easley, G.R., O’Leary, D.P.: Windowed spectral regularization of inverse problems. SIAM J. Sci. Comput. 33(6), 3175–3200 (2012)

    Article  MathSciNet  Google Scholar 

  11. Colonna, F., Easley, G.R.: The multichannel deconvolution problem: a discrete analysis. J. Fourier Anal. Appl. 10, 351–376 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 15, 3089–3101 (2006)

    Article  Google Scholar 

  13. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  14. Durand, S.: Orthonormal bases of non-separable wavelets with sharp directions. In: Proceedings of IEEE Int. Conf. on Image Proc. (2005)

    Google Scholar 

  15. Durand, S.: M-band filtering and non-redundant directional wavelets. Appl. Comput. Harmon. Anal. 22(1), 124–139 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Easley, G., Labate, D.: Critically sampled wavelets with composite dilations. IEEE Trans. Image Process. 21(2), 550–561 (2012)

    Article  MathSciNet  Google Scholar 

  17. Easley, G., Labate, D., Lim, W.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25, 25–46 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Easley, G.R., Walnut, D.F.: Local multichannel deconvolution. J. Math. Imaging Vis. 18, 69–80 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., Ramamorthi, R.: Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28(3), 1–13 (2009)

    Article  Google Scholar 

  20. Eslami, R., Radha, H.: New image transforms using hybrid wavelets and directional filter banks: analysis and design. In: Proc. IEEE Int. Conf. Image Process., ICIP2005, Genova, Italy (2005)

    Google Scholar 

  21. Eslami, R., Radha, H.: Regular hybrid wavelets and directional filter banks: extensions and applications. In: Proc. IEEE Int. Conf. Image Process., ICIP2006, Atlanta, GA (2006)

    Google Scholar 

  22. Eslami, R., Radha, H.: A new family of nonredundant transforms using hybrid wavelets and directional filter banks. IEEE Trans. Image Process. 16(4), 1152–1167 (2007)

    Article  MathSciNet  Google Scholar 

  23. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 9, 891–906 (1991)

    Article  Google Scholar 

  24. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 9, 298–318 (2007)

    Article  MathSciNet  Google Scholar 

  25. Guo, K., Labate, D.: Optimally sparse 3D approximations using shearlet representations. Electron. Res. Announc. Am. Math. Soc. 17, 126–138 (2010)

    MathSciNet  Google Scholar 

  26. Guo, K., Labate, D., Lim, W.-Q., Labate, D., Weiss, G., Wilson, E.: Wavelets with composite dilations. Electron. Res. Announc. Am. Math. Soc. 10, 78–87 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Guo, K., Labate, D., Lim, W.-Q., Labate, D., Weiss, G., Wilson, E.: Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20, 220–236 (2006)

    Article  MathSciNet  Google Scholar 

  28. Guo, K., Labate, D., Lim, W.-Q., Labate, D., Weiss, G., Wilson, E.: The theory of wavelets with composite dilations. In: Heil, C. (ed.) Harmonic Analysis and Applications, pp. 231–249. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  29. Harikumar, G., Bresler, Y.: FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders. IEEE Trans. Signal Process. 46, 215–218 (1998)

    Article  Google Scholar 

  30. Lu, J., Healy, D.M. Jr.: Contrast enhancement via multi-scale gradient transformation. In: Wavelet Applications, Proceedings of SPIE, Orlando, FL, April 5–8, pp. 5–8 (1994)

    Google Scholar 

  31. Higaki, S., Kyochi, S., Tanaka, Y., Ikehara, M.: A novel design of critically sampled contourlet transform and its application to image coding. In: Proc. IEEE Int. Conf. Image Process., ICIP2008, San Diego, CA (2008)

    Google Scholar 

  32. Kryshtal, I., Robinson, B., Weiss, G., Wilson, E.: Compactly supported wavelets with composite dilations. J. Geom. Anal. 17, 87–96 (2006)

    Article  Google Scholar 

  33. Kutyniok, G., Lim, W.: Compactly supported shearlets are optimally sparse. J. Approx. Theory 163, 1564–1589 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Labate, D., Lim, W., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. In: Wavelets XI, San Diego, CA, 2005. SPIE Proc., vol. 5914, pp. 254–262. SPIE, Bellingham (2005)

    Chapter  Google Scholar 

  35. Laine, A.F., Zong, X.: A multiscale sub-octave wavelet transform for de-noising and enhancement. In: Wavelet Applications, Proceedings of SPIE, Denver, CO, August 6–9, pp. 238–249 (1996)

    Google Scholar 

  36. Lu, Y., Do, M.N.: The finer directional wavelet transform. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia (2005)

    Google Scholar 

  37. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  38. Nguyen, T.T., Oraintara, S.: Multiresolution direction filterbanks: theory, design, and applications. IEEE Trans. Signal Process. 53(10), 3895–3905 (2005)

    Article  MathSciNet  Google Scholar 

  39. Schiske, P.: Zur frage der bildrekonstruktion durch fokusreihen. In: Proc. Eur. Reg. Conf. Electron. Microsc. 4th, pp. 1–145 (1968)

    Google Scholar 

  40. Schiske, P.: Image processing using additional statistical information about the object. In: Hawkes, P.W. (ed.) Image Processing and Computer Aided Design in Electron Optics. Academic Press, New York (1973)

    Google Scholar 

  41. Simoncelli, E.P., Adelson, E.H.: Non-separable extensions of quadrature mirror filters to multiple dimensions. Proc. IEEE 78(4), 652–664 (1990)

    Article  Google Scholar 

  42. Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  43. Starck, J.L., Murtagh, F., Candes, E., Donoho, D.L.: Gray and color image contrast enhancement by the curvelet transform. IEEE Trans. Image Process. 12(6), 706–717 (2003)

    Article  MathSciNet  Google Scholar 

  44. Starck, J.L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  45. Tanaka, Y., Ikehara, M., Nguyen, T.Q.: Multiresolution image representation using combined 2D and 1D directional filter banks. IEEE Trans. Image Process. 18(2), 269–280 (2009)

    Article  MathSciNet  Google Scholar 

  46. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9, 81–84 (2002)

    Article  Google Scholar 

  47. Yi, S., Labate, D., Easley, G.R., Krim, H.: A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 18(5), 929–941 (2009)

    Article  MathSciNet  Google Scholar 

  48. Zhou, J., Do, M.N.: Multidimensional multichannel FIR deconvolution using Gröbner bases. IEEE Trans. Image Process. 15, 2998–3007 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

D. Labate acknowledges partial support from NSF grants DMS 1008900 and DMS 1005799 and NHARP grant 003652-0136-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn R. Easley.

Appendix

Appendix

Below is a Matlab-based pseudo-code to generate the hyperbolic composite wavelet filters restricted to the fourth quadrant. The complete filters are found by adding the appropriate flip with zero padding. N 0 is the quadrant size of the image and k≥2 is a multiplier to determine the number of sequence elements. Hr and Ht denote the window functions for the radial and time parameters.

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Easley, G.R., Labate, D. & Patel, V.M. Directional Multiscale Processing of Images Using Wavelets with Composite Dilations. J Math Imaging Vis 48, 13–34 (2014). https://doi.org/10.1007/s10851-012-0385-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0385-4

Keywords