Abstract
Camera motion estimation from observed scene features is an important task in image processing to increase the accuracy of many methods, e.g., optical flow and structure-from-motion. Due to the curved geometry of the state space \({\text {SE}}_{3}\) and the nonlinear relation to the observed optical flow, many recent filtering approaches use a first-order approximation and assume a Gaussian a posteriori distribution or restrict the state to Euclidean geometry. The physical model is usually also limited to uniform motions. We propose a second-order optimal minimum energy filter that copes with the full geometry of \({\text {SE}}_{3}\) as well as with the nonlinear dependencies between the state space and observations., which results in a recursive description of the optimal state and the corresponding second-order operator. The derived filter enables reconstructing motions correctly for synthetic and real scenes, e.g., from the KITTI benchmark. Our experiments confirm that the derived minimum energy filter with higher-order state differential equation copes with higher-order kinematics and is also able to minimize model noise. We also show that the proposed filter is superior to state-of-the-art extended Kalman filters on Lie groups in the case of linear observations and that our method reaches the accuracy of modern visual odometry methods.










Similar content being viewed by others
References
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Agrachev, A.A., Sachkov, Y.: Control Theory from the Geometric Viewpoint, vol. 2. Springer, Berlin (2004)
Aguiar, A., Hespanha, J.: Minimum-energy state estimation for systems with perspective outputs. IEEE Trans. Autom. Control 51(2), 226–241 (2006). doi:10.1109/TAC.2005.861686
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)
Athans, M., Falb, P.: Optimal Control. An Introduction to the Theory and Its Applications. McGraw-Hill, New York (1966)
Badino, H., Yamamoto, A., Kanade, T.: Visual odometry by multi-frame feature integration. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 222–229. IEEE (2013)
Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, Berlin (2009)
Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30(3), 679–693 (2014)
Bellavia, F., Fanfani, M., Pazzaglia, F., Colombo, C.: Robust selective stereo SLAM without loop closure and bundle adjustment. In: Image Analysis and Processing—ICIAP 2013, pp. 462–471. Springer (2013)
Berger, J., Neufeld, A., Becker, F., Lenzen, F., Schnörr, C.: Second order minimum energy filtering on SE(3) with nonlinear measurement equations. In: Scale Space and Variational Methods in Computer Vision, pp. 397–409. Springer (2015)
Bonnabel, S.: Left-invariant extended Kalman filter and attitude estimation. In: IEEE Conference on Decision and Control, pp. 1027–1032 (2007)
Bourmaud, G., Mégret, R.: Robust large scale monocular visual SLAM. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1638–1647 (2015)
Bourmaud, G., Mégret, R., Arnaudon, M., Giremus, A.: Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated Gaussian distributions. J. Math. Imaging Vis. 51(1), 209–228 (2015)
Brigo, D., Hanzon, B., Le Gland, F.: Approximate nonlinear filtering by projection on exponential manifolds of densities. Bernoulli 5(3), 495–534 (1999)
Chikuse, Y.: Statistics on Special Manifolds, vol. 174. Springer, Berlin (2012)
Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications, vol. 2. Springer, Berlin (2011)
Daum, F.: Nonlinear filters: beyond the Kalman filter. IEEE A&E Syst. Mag. 20(8, Part 2), 57–69 (2005)
Daum, F., Huang, J.: Curse of dimensionality and particle filters. In: Aerospace Conference (2003). doi:10.1109/AERO.2003.1235126
Dieci, L., Eirola, T.: Positive definiteness in the numerical solution of Riccati differential equations. Numer. Math. 67(3), 303–313 (1994)
Frogerais, P., Bellanger, J., Senhadji, L.: Various ways to compute the continuous-discrete extended Kalman filter. IEEE Trans. Autom. Control 57, 1000–1004 (2012). doi:10.1109/TAC.2011.2168129
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium (IV). IEEE (2011)
Gordon, N.J., Salmond, D.J., Smith, A.F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings F-Radar and Signal Processing, vol. 140, pp. 107–113. IET (1993)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)
Hartley, R., et al.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593 (1997)
Hauberg, S., Lauze, F., Pedersen, K.: Unscented Kalman filtering on Riemannian manifolds. J. Math. Imaging Vis. 46(1), 103–120 (2013)
Hsu, E.P.: Stochastic Analysis on Manifolds, vol. 38. American Mathematical Soc., Providence (2002)
Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Courier Corporation, Chelmsford (2007)
Julier, S.J., Uhlmann, J.K.: New Extension of the Kalman Filter to Nonlinear Systems. In: AeroSense’97, pp. 182–193. International Society for Optics and Photonics (1997)
Jurdjevic, V.: Geometric Control Theory. Cambridge university press, Cambridge (1997)
Kalman, R.E.: A new approach to linear filtering and prediction problems. J Fluids Eng. 82(1), 35–45 (1960)
Krener, A.J.: The convergence of the minimum energy estimator. In: New Trends in Nonlinear Dynamics and Control and their Applications. Springer (2003)
Kwon, J., Choi, M., Park, F.C., Chun, C.: Particle filtering on the Euclidean group: framework and applications. Robotica 25(6), 725–737 (2007)
Kwon, J., Lee, K.M.: Monocular SLAM with locally planar landmarks via geometric Rao-Blackwellized particle filtering on Lie Groups. In: CVPR 2010, pp. 1522–1529. IEEE (2010)
Lancaster, P., Rodman, L.: Existence and uniqueness theorems for the algebraic Riccati equation. Int. J. Control 32(2), 285–309 (1980)
Markley, F.L.: Attitude error representations for Kalman filtering. J. Guid. Control Dyn. 26(2), 311–317 (2003)
Miller, M.I., Srivastava, A., Grenander, U.: Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognition. IEEE Trans. Signal Process. 43(11), 2678–2690 (1995)
Mortensen, R.E.: Maximum-likelihood recursive nonlinear filtering. J. Opt. Theory Appl. 2(6), 386–394 (1968)
Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)
Nasihatkon, B., Hartley, R., Trumpf, J.: A generalized projective reconstruction theorem and depth constraints for projective factorization. Int. J. Comput. Vis. 115(2), 87–114 (2015)
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)
Petersen, K.B., Pedersen, M.S., et al.: The matrix cookbook. Tech. Univ. Den. 7, 15 (2008)
Rentmeesters, Q., Absil, P.A., Van Dooren, P., Gallivan, K., Srivastava, A.: An efficient particle filtering technique on the Grassmann manifold. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3838–3841. IEEE (2010)
Saccon, A., Aguiar, A.P., Hauser, J.: Lie group projection operator approach: optimal control on T SO (3). In: CDC, pp. 6973–6978 (2011)
Saccon, A., Hauser, J., Aguiar, A.: Optimal control on Lie groups: the projection operator approach. IEEE Trans. Autom. Control 58(9), 2230–2245 (2013). doi:10.1109/TAC.2013.2258817
Saccon, A., Trumpf, J., Mahony, R., Aguiar, A.P.: Second-order-optimal filters on Lie groups. In: CDC (2013)
Särkkä, S., Hartikainen, J., Solin, A.: EKF/UKF toolbox for Matlab V1.3 (2011). http://becs.aalto.fi/en/research/bayes/ekfukf/
Schön, T., Gustafsson, F., Nordlund, P.J.: Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Process. 53(7), 2279–2289 (2005). doi:10.1109/TSP.2005.849151
Selig, J.: Lie groups and Lie algebras in robotics. In: Computational Noncommutative Algebra and Applications, pp. 101–125. Springer (2004)
Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: ECCV, pp. 709–720. Springer, Cambridge, England (1996)
Tompkins, F., Wolfe, P.J.: Bayesian filtering on the Stiefel manifold. In: 2nd IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, 2007 (CAMPSAP 2007), pp. 261–264. IEEE (2007)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Vision Algorithms: Theory and Practice, pp. 298–372. Springer (2000)
Tyagi, A., Davis, J.W.: A recursive filter for linear systems on Riemannian manifolds. In: CVPR, pp. 1–8. IEEE (2008)
Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a Rigid motion prior. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1291–1298. IEEE (2011)
Wang, Y., Chirikjian, G.S.: Nonparametric second-order theory of error propagation on motion groups. Int. J. Robot. Res. 27(11–12), 1258–1273 (2008)
Whelan, T., Kaess, M., Leonard, J.J., McDonald, J.: Deformation-based loop closure for large scale dense RGB-D SLAM. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 548–555. IEEE (2013)
Wolfe, K., Mashner, M., Chirikjian, G.: Bayesian Fusion on Lie groups. J. Algebr. Stat. 2(1), 75–97 (2011)
Zamani, M., Trumpf, J., Mahony, R.: Minimum-energy filtering for attitude estimation. IEEE Trans. Autom. Control 58(11), 2917–2921 (2013)
Zamani, M., Trumpf, J., Mahoney, M.: A second order minimum-energy filter on the special orthogonal group. In: Proc. ACC (2012)
Žefran, M., Kumar, V., Croke, C.: Metrics and connections for rigid-body kinematics. Int. J. Robot. Res. 18(2), 242–251 (1999)
Zhang, C., Taghvaei, A., Mehta, P.G.: Feedback particle filter on matrix Lie groups (2015). arXiv:1510.01259
Acknowledgements
This work was supported by the DFG (German Research Foundation), Grant GRK 1653.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Properties of \({\text {SE}}_{3}\) and \(\mathcal {G}\)
1.1 Projection onto \(\mathfrak {se}_{3}\)
The projection \({\text {Pr}}: \mathbb {R}^{4\times 4} \rightarrow \mathfrak {se}_{3}\) is given by
1.2 Adjoints, Exponential and Logarithmic Map
The adjoint operator \({\text {ad}}_{\mathfrak {se}} (\left[ v\right] _{\mathfrak {se}}^{\wedge })\) can be computed for a vector \(v\in \mathbb {R}^{6}\) as follows
where \(\left[ v_{1:3}\right] _{\mathfrak {so}}^{\wedge }:=(\left[ v\right] _{\mathfrak {se}}^{\wedge })_{1:3,1:3}\).
Since \(\mathbb {R}^{6}\) is trivial, the adjoint representation on \(\mathfrak {g}\) parametrized by a vector \(v \in \mathbb {R}^{12}\) is
The exponential map \({\text {Exp}}_{{\text {SE}}_{3}}: \mathfrak {se}_{3}\rightarrow {\text {SE}}_{3}\) and the logarithmic map on \({\text {SE}}_{3}\) can be computed by the matrix exponential and matrix logarithm or more efficiently by the Rodrigues’ formula as in [39, p. 413f ].
Then, the exponential map \({\text {Exp}}_{\mathcal {G}}:\mathfrak {se}_{3}\rightarrow {\text {SE}}_{3}\) for a tangent vector \(\eta = (\eta _{1}, \eta _{2})\in \mathfrak {g}\) and the logarithmic map \({\text {Log}}_{G}:{\text {SE}}_{3}\rightarrow \mathfrak {se}_{3}\) for \(x =(E,v) \in \mathcal {G}\) are simply
and similar for higher-order state spaces.
1.3 Vectorization of Connection Function
Following [1, Section 5.2], we can vectorize the connection function \(\omega \) of the Levi-Civita connection \(\nabla \) for constant \(\eta ,\) \(\xi \in \mathfrak {g}\) in the following way:
where \({\varGamma (\gamma )}\) is the matrix whose (i, j) element is the real-valued function
and \(\varGamma _{jk}^{i}\) are the Christoffel symbols of the connection function \(\omega \) for a vector \(\gamma \in \mathbb {R}^{12}.\) Similarly, permuting indices, we can define the adjoint matrix \({\varGamma ^{*}(\gamma )}\), whose (i, j)-th element is given by
This leads to the following equality:
If the expression \(\xi \) in (85) is non-constant, we will obtain the following vectorization from [1, Eq. (5.7)] for the case of the Lie algebra \(\mathfrak {se}_{3}\), i.e.,
where the entries of the matrix \(D \in \mathbb {R}^{6\times 6}\) can be computed as
where \(e_{j}^{6}\) denotes the j-th unit vector in \(\mathbb {R}^{6}\).
Appendix 2: Proofs
Proof (of Proposition 1)
The tangent map is simply the differential or directional derivative. For \(x_{1}=(E_{1},v_{1}) ,x_{2}=(E_{2},v_{2})\in \mathcal {G}\) it holds \(T_{x_{2}}L_{x_{1}}:T_{x_{2}}\mathcal {G}\rightarrow T_{L_{x_{1}}(x_{2})}\mathcal {G}.\) Thus, we can compute it for a \(\eta = (E_{2}\eta _{1},\eta _{2})\in T_{x_{2}}\mathcal {G}= T_{E_{2}}{\text {SE}}_{3}\times \mathbb {R}^{6}\) as follows
For \(x_{2}={\text {Id}}= (\mathbbm {1}_{4}, \mathbf {0}_{6})\) and \(\eta = (\eta _{1}, \eta _{2}) \in \mathfrak {g}\), we gain
Note that the adjoint of the tangent map of \(L_{x}\) at identity can be expressed as inverse of \(x=(E,v)\), i.e., for \(\eta =(\eta _{1},\eta _{2}) \in T_{x}\mathcal {G}\) and \(\xi =(\xi _{1}, \xi _{2}) \in \mathfrak {g}\)
Thus, \(T_{{\text {Id}}}L_{x}^{*} \eta = L_{(E^{-1}, \mathbf {0}_{6})}\eta \). We will use the shorthand \(x^{-1}\eta := T_{{\text {Id}}}L_{x}^{*}\eta \) for the dual of the tangent map of \(L_{x}\) at identity. \(\square \)
Proof (of Lemma 1)
Since \(\mu = (\mu _{1}, \mu _{2})\) and v are independent of E, the gradient \(\mathbf {d}_{1} \mathcal {H}(x=(E,v), \mu , t)\) can be computed separately in terms of E and v, i.e., for \(\eta = (E \eta _{1}, \eta _{2}) \in T_{x}\mathcal {G}\)
The directional derivative regarding v can be computed by the usual gradient on \(\mathbb {R}^{6}\), which is given by
such that \(\mathbf {d}_{v} \langle \mu _{1}, \left[ v\right] _{\mathfrak {se}}^{\wedge } \rangle = -{\left[ \mu _{1}\right] _{\mathfrak {se}}^{\vee }}\). For the directional derivative of \(\mathcal {H}\), we first consider the directional derivative of \(h_{z}(E).\) Since \(h_{z}(E)\) can also be written as
with \(\quad \hat{I}:=\left( {\begin{matrix}1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \end{matrix}}\right) \) and \(\mathbf {e}:= \left( {\begin{matrix}0&0&1&0\end{matrix}}\right) \), the directional derivative (into direction \(\xi \)) can be derived by the following matrix calculus:
where \(\kappa _{z} = \kappa _{z}(E):= {\mathbf {e}}E^{-1} g_{z}.\) Then for the choice \(\xi = E\eta _{1}\) we find that
Here we used the property that the trace is cyclic. We obtain the Riemannian gradient on \({\text {SE}}_{3}\) by projecting (cf. [1, Section 3.6.1]) the left-hand side of the Riemannian metric in (96) onto \(T_{E}{\text {SE}}_{3}\), which is for \(x=(E,v)\)
with \(\hat{G}_{z}(E):=\hat{G}_{z}(E,y):= \bigl (\kappa _{z}^{-1}\hat{I} - \kappa _{z}^{-2} \hat{I} E^{-1} g_{z}{\mathbf {e}} \bigr )^{\top } Q(y_{z} - h_{z}(E)) g_{z}^{\top } E^{-\top }\), and \({\text {Pr}}_{E}:{\text {GL}}_{4} \rightarrow T_{E}{\text {SE}}_{3}\) denotes the projection onto the tangential space \(T_{E}{\text {SE}}_{3}\) that can be expressed in terms of \({\text {Pr}}_{E}(E \cdot ) = E {\text {Pr}}(\cdot )\). Besides, \({\text {Pr}}:{\text {GL}}_{4} \rightarrow \mathfrak {se}_{3}\) denotes the projection onto the Lie algebra \(\mathfrak {se}_{3}\) as given in (80).
Putting together (91) and (97) results in
\(\square \)
Proof (of Lemma 2)
Eq. (52) can be easily found by considering a basis of \(\mathfrak {se}_{3}\) and by the fact that Z is a linear operator on the Lie algebra. Since the resulting matrix \(K(t) {\left[ \eta \right] _{\mathfrak {g}}^{\vee }} := Z(x)\circ \eta \) depends only on t, equation (53). Eq.(54) is trivial since Z is linear.
-
1.
With the symmetry of the Levi-Civita connection, i.e.,
$$\begin{aligned}{}[\eta ,\xi ] = \nabla _{\eta }\xi - \nabla _{\xi }\eta , \end{aligned}$$(99)we gain the following equalities
$$\begin{aligned}&{\left[ Z(x)[ \omega _{x^{-1} \dot{x}}\eta ] + Z(x)\bigl [\omega _{\mathbf {d}_{2}\mathcal {H}(x,\mathbf {0},t)}^{\leftrightharpoons }\eta \bigr ]\right] _{\mathfrak {g}}^{\vee }} \nonumber \\ \mathop {=}\limits ^{(52)}&K(t) {\left[ \omega _{x^{-1} \dot{x}}\eta + \omega _{\mathbf {d}_{2}\mathcal {H}(x,\mathbf {0},t)}^{\leftrightharpoons }\eta \right] _{\mathfrak {g}}^{\vee }} \nonumber \\ \mathop {=}\limits ^{(49)}&K(t)\Bigl ( {\left[ \nabla _{ -\mathbf {d}_{2} \mathcal {H}(x,\mathbf {0},t)}\eta \right] _{\mathfrak {g}}^{\vee }} \nonumber \\&- {\left[ \nabla _{e^{-\alpha (t-t_{0})} Z(x)^{-1}[G(x)]}\eta + \nabla _{\eta }\mathbf {d}_{2}\mathcal {H}(x,\mathbf {0},t)\right] _{\mathfrak {g}}^{\vee }} \Bigr )\nonumber \\ \mathop {=}\limits ^{(99)}&K(t) \Bigl ({\left[ -[\mathbf {d}_{2}\mathcal {H}(x,\mathbf {0},t),\eta ]\right] _{\mathfrak {g}}^{\vee }} \nonumber \\&- {\left[ \nabla _{e^{-\alpha (t-t_{0})} Z(x)^{-1} [G(x)]}\eta \right] _{\mathfrak {g}}^{\vee }} \Bigr ) \nonumber \\ \mathop {=}\limits ^{(88)}&K(t) \Bigl ( {\left[ [f(x),\eta ]\right] _{\mathfrak {g}}^{\vee }} \nonumber \\&- \varGamma ^{*}\bigl ({\left[ e^{-\alpha (t-t_{0})} Z(x)^{-1}[G(x)]\right] _{\mathfrak {g}}^{\vee }}\bigr ){\left[ \eta \right] _{\mathfrak {g}}^{\vee }} \Bigr ) \nonumber \\ \mathop {=}\limits ^{(52)}&K(t) \Bigl ( {\left[ (f(x),\eta )\right] _{\mathfrak {g}}^{\vee }} \nonumber \\&+ \varGamma ^{*}\bigl (-e^{-\alpha (t-t_{0})} K(t)^{-1}{\left[ G(x)\right] _{\mathfrak {g}}^{\vee }}\bigr ) {\left[ \eta \right] _{\mathfrak {g}}^{\vee }}\Bigr ) \nonumber \\ \mathop {=}\limits ^{(82)}&K(t) \Bigl ( {\text {ad}}_{\mathfrak {g}}^{\vee } (f(x)) \nonumber \\&+ \varGamma ^{*}\bigl (-e^{-\alpha (t-t_{0})} K(t)^{-1}{\left[ G(x)\right] _{\mathfrak {g}}^{\vee }}\bigr ) \Bigr ){\left[ \eta \right] _{\mathfrak {g}}^{\vee }} \nonumber \\ =:&K(t) B(x) {\left[ \eta \right] _{\mathfrak {g}}^{\vee }}. \end{aligned}$$(100)The claim follows from the fact that the adjoints and the Christoffel symbols on \(\mathbb {R}^{6}\) are zero, such that B reads as i.e.,
$$\begin{aligned} B(x) = \left( {\begin{matrix}-C_{1,1}^{t} (x)&{} \mathbf {0}_{6 \times 6} \\ \mathbf {0}_{6 \times 6} &{} \mathbf {0}_{6 \times 6} \end{matrix}}\right) . \end{aligned}$$(101)with \(C_{1,1}^t\) from Theorem 1.
-
2.
Since this expression is dual to the expression in 1., the claim follows by using its transpose.
-
3.
Recall that the Hamiltonian in (32) is given by
$$\begin{aligned} \mathcal {H}((E,v), \mu , t)&= \tfrac{1}{2}e^{-\alpha (t-t_{0})} \Bigl ( \sum _{z \in \varOmega } ||y_{z}-h_{z}(E)||_{Q}^{2} \Bigr ) \\&\quad - \tfrac{1}{2}e^{\alpha (t-t_{0})}\Bigg ( \left\langle \mu _{1}, \left[ S_{1}^{-1}{\left[ \mu _{1}\right] _{\mathfrak {se}}^{\vee }}\right] _{\mathfrak {se}}^{\wedge } \right\rangle _{{\text {Id}}} \\&\quad + \big \langle \mu _{2}, S_{2}^{-1} \mu _{2} \big \rangle \Bigr ) - \big \langle \mu _{1}, \left[ v\right] _{\mathfrak {se}}^{\wedge }\big \rangle _{{\text {Id}}} . \end{aligned}$$The Riemannian Hessian w.r.t. the first component can be computed for \(x=(E,v) \in \mathcal {G}\), \(\eta =(\eta _{1},\eta _{2}) \in \mathfrak {g}\) and the choice \(\mu = (\mu _{1},\mu _{2})=(\mathbf {0}_{4\times 4}, \mathbf {0}_{6})\) as
$$\begin{aligned}&e^{\alpha (t-t_{0})}{\left[ x^{-1} {\text {Hess}}_{1} \mathcal {H}(x,\mu ,t)[x\eta ]\right] _{\mathfrak {g}}^{\vee }} \nonumber \\&=e^{\alpha (t-t_{0})} {\left[ x^{-1} \nabla _{x\eta } \mathbf {d}_{1} \mathcal {H}(x,\mathbf {0},t)\right] _{\mathfrak {g}}^{\vee }} \end{aligned}$$(102)$$\begin{aligned}&= e^{\alpha (t-t_{0})} {\left[ \nabla _{\eta } x^{-1} \mathbf {d}_{1} \mathcal {H}(x,\mathbf {0},t)\right] _{\mathfrak {g}}^{\vee }} \end{aligned}$$(103)$$\begin{aligned}&= {\left[ \nabla _{\eta } \bigl (\sum _{z \in \varOmega }{\text {Pr}}(\hat{G}_{z}(E)), -e^{\alpha (t-t_{0})} {\left[ \mathbf {0}_{4\times 4}\right] _{\mathfrak {se}}^{\vee }} \bigr )\right] _{\mathfrak {g}}^{\vee }} \end{aligned}$$(104)$$\begin{aligned}&= \Bigl (\sum _{z \in \varOmega } {\left[ \nabla _{\eta _{1}} {\text {Pr}}\bigl (\hat{G}_{z}(E)\bigr )\right] _{\mathfrak {se}}^{\vee }}, \mathbf {0}_{6}\Bigr ) \nonumber \\&= \sum _{z \in \varOmega }\Bigl ( \varGamma \left( {\left[ {\text {Pr}}(\hat{G}_{z}(E))\right] _{\mathfrak {g}}^{\vee }}\right) {\left[ \eta _{1}\right] _{\mathfrak {se}}^{\vee }} \nonumber \\&\qquad + \sum _{i} ({\left[ \eta _{1}\right] _{\mathfrak {se}}^{\vee }})_{i} {\left[ \mathbf {d}{Pr}\bigl (\hat{G}_{z}(E)\bigr ))[E^{i}]\right] _{\mathfrak {se}}^{\vee }} , \mathbf {0}_{6} \Bigr ). \end{aligned}$$(105)Here, line (102) follows from the general definition of the Hessian (cf. [1, Def. 5.5.1]). Line (103) is valid because of the linearity of the affine connection, equation (104) results from insertion of the expression in Lemma 1 and (105) can be achieved with (89).
Next, we calculate the differential \( \mathbf {d}{Pr}(\hat{G}_{z}(E)) [\eta _{1}]\) in (105) for an arbitrary direction \(\eta _{1}\). Since the projection is a linear operation (cf. (80)), i.e., \(\mathbf {d}{Pr}(\hat{G}_{z}(E))[\eta _{1}] = {\text {Pr}}(\mathbf {d}\hat{G}_{z}(E)[\eta _{1}])\), we require calculating \(\mathbf {d}\hat{G}_{z}(E)[\eta _{1}]\). By using the product rule and the definition of \(\hat{G}_{z}\) from (37), we obtain
$$\begin{aligned}&\mathbf {d}\hat{G}_{z}(E) [\eta _{1}] \nonumber \\&\quad = \mathbf {d}\bigl (\bigl (\kappa _{z}^{-1}\hat{I} - \kappa _{z}^{-2} \hat{I} E^{-1} g_{z}{\mathbf {e}} \bigr )^{\top }Q(y_{z} - h_{z}(E)) g_{z}^{\top } E^{-\top } \bigr )[\eta _{1}] \nonumber \\&\quad = \bigl (\mathbf {d}\bigl (\kappa _{z}^{-1}\hat{I} - \kappa _{z}^{-2} \hat{I} E^{-1} g_{z}{\mathbf {e}} \bigr )^{\top }[\eta _{1}]Q(y_{z} - h_{z}(E)) g_{z}^{\top } E^{-\top } \bigr ) \nonumber \\&\qquad + \bigl (\kappa _{z}^{-1}\hat{I} - \kappa _{z}^{-2} \hat{I} E^{-1} g_{z}{\mathbf {e}} \bigr )^{\top }Q \Bigl (\Bigl ( - \mathbf {d}h_{z}(E)[\eta _{1}]\Bigr ) g_{z}^{\top } E^{-\top } \Bigr ) \nonumber \\&\qquad + \bigl ((y_{z} - h_{z}(E)) g_{z}^{\top } \mathbf {d}E^{-\top }[\eta _{1}] \bigr ) \Bigr ) . \end{aligned}$$(106)The directional derivative of \(\bigl (\kappa _{z}^{-1}\hat{I} - \kappa _{z}^{-2} \hat{I} E^{-1} g_{z}{\mathbf {e}} \bigr )\) is
$$\begin{aligned}&\mathbf {d}\bigl (\kappa _{z}^{-1}\hat{I} - \kappa _{z}^{-2} \hat{I} E^{-1} g_{z}{\mathbf {e}} \bigr )[\eta _{1}] \nonumber \\&\quad = -\kappa _{z}^{-2} {\mathbf {e}} \mathbf {d}E^{-1}[\eta _{1}] g_{z}\hat{I} + 2 \kappa _{z}^{-3}{\mathbf {e}} \mathbf {d}E^{-1}[\eta _{1}]g_{z} \hat{I}E^{-1}g_{z}{\mathbf {e}} \nonumber \\&\qquad - \kappa _{z}^{-2} \hat{I} \mathbf {d}E^{-1} [\eta _{1}] g_{z}{\mathbf {e}} \nonumber \\&\quad = \kappa _{z}^{-2} {\mathbf {e}} E^{-1}\eta E^{-1} g_{z} \hat{I} - 2\kappa _{z}^{-3}{\mathbf {e}} E^{-1}\eta _{1} E^{-1} g_{z} \hat{I}E^{-1}g_{z}{\mathbf {e}}\nonumber \\&\qquad + \kappa _{z}^{-2} \hat{I}E^{-1} \eta _{1} E^{-1} g_{z}{\mathbf {e}} . \end{aligned}$$(107)By inserting the directional derivatives (107), (94) and \(\mathbf {d}E^{-\top }[\eta _{1}] = -(E^{-1}\eta _{1}E^{-1})^{\top }\) into (106), we obtain the vector-valued function \(\zeta ^{k}(E)(\cdot ): \mathfrak {se}_{3}\rightarrow \mathbb {R}^{6}\) defined as
$$\begin{aligned}&\left[ \zeta ^{k}(E)(\eta _{1})\right] _{\mathfrak {se}}^{\wedge } := {\text {Pr}}\bigl (\mathbf {d}\hat{G}_{z}(E)[\eta _{1}] \bigr ) \nonumber \\&\quad = {\text {Pr}} \biggl (\Bigl (\kappa _{z}^{-2} {\mathbf {e}} E^{-1}\eta _{1} E^{-1} g_{z} \hat{I} - 2\kappa _{z}^{-3}{\mathbf {e}} E^{-1}\eta _{1} E^{-1} g_{z} \hat{I}E^{-1}g_{z}{\mathbf {e}} \nonumber \\&\qquad + \kappa _{z}^{-2} \hat{I}E^{-1} \eta _{1} E^{-1} g_{z}{\mathbf {e}}\Bigr )^{\top }Q\bigl (y_{z} - h_{z}(E)\bigr ) g_{z}^{\top } E^{-\top } \nonumber \\&\qquad + \bigl (\kappa _{z}^{-1}\hat{I} - \kappa _{z}^{-2} \hat{I} E^{-1} g_{z}{\mathbf {e}} \bigr )^{\top }Q \Bigl (\bigl (\kappa _{z}^{-1} \hat{I}E^{-1} \eta _{1} E^{-1} g_{z} \nonumber \\&\qquad - \kappa _{z}^{-2}{\mathbf {e}}E^{-1}\eta _{1} E^{-1}g_{z}\hat{I} E^{-1} g_{z} \bigr ) g_{z}^{\top }E^{-\top } \nonumber \\&\qquad - \bigl (y_{z}-h_{z}(E)\bigr )g_{z}^{\top } E^{-\top } \eta _{1}^{\top } E^{-\top } \Bigr )\biggr ) . \end{aligned}$$(108)Using the basis \(\{E^{j}\}_{j=1}^{6}\) of \(\mathfrak {se}_{3}\), with \(E^{j}:= \left[ e_{j}^{6}\right] _{\mathfrak {se}}^{\wedge }\) we define, as in (90), the following matrix \(D_{z}(E) \in \mathbb {R}^{6\times 6}\) with components
$$\begin{aligned} (D_{z}(E))_{i,j}:= \zeta _{i}^{k}(E^{j}). \end{aligned}$$(109)By using Eq. (89), we find that
$$\begin{aligned} {\left[ \nabla _{\eta _{1}} {\text {Pr}}(\hat{G}_{z}(E))\right] _{\mathfrak {se}}^{\vee }} = \bigl (\varGamma ({\text {Pr}}(\hat{G}_{z}(E))) + D_{z}(E)\bigr ) {\left[ \eta _{1}\right] _{\mathfrak {se}}^{\vee }}. \end{aligned}$$Insertion of this expression into (105) finally leads to the desired result, i.e.,
$$\begin{aligned}&e^{\alpha (t-t_{0})}{\left[ x^{-1} {\text {Hess}}_{1} \mathcal {H}(x,\mu ,t)[x\eta ]\right] _{\mathfrak {g}}^{\vee }} \nonumber \\&\quad = \begin{pmatrix} \sum _{z \in \varOmega } \bigl ( \varGamma \bigl ({\left[ {\text {Pr}}\bigl (\hat{G}_{z}(E)\bigr )\right] _{\mathfrak {se}}^{\vee }}\bigr ) + D_{z}(E)\bigr ) &{} \mathbf {0}_{6\times 6} \\ \mathbf {0}_{6\times 6} &{} \mathbf {0}_{6\times 6} \end{pmatrix} {\left[ \eta \right] _{\mathfrak {g}}^{\vee }} . \end{aligned}$$ -
4.
The Riemannian gradient of the Hamiltonian regarding the second component is zero, thus we obtain
$$\begin{aligned} \mathbf {d}_{2} \mathcal {H} (x,\mathbf {0}, t) = \bigl ( - \left[ v\right] _{\mathfrak {se}}^{\wedge } , \mathbf {0} \bigr ) = - f(x). \end{aligned}$$(110)Computation of the differential regarding the first component at \(\eta = (E\eta _{1},\eta _{2}) \in T_{x}\mathcal {G}\) results in
$$\begin{aligned} \mathbf {d}_{1}(\mathbf {d}_{2} \mathcal {H}(x,\mathbf {0},t))[\eta ] =&-\mathbf {d}f(x)[\eta ] \\ =&-\mathbf {d}_{(E,v)} (\left[ v\right] _{\mathfrak {se}}^{\wedge }, \mathbf {0})[\eta ] \\ =&-(\left[ \eta _{2}\right] _{\mathfrak {se}}^{\wedge } , \mathbf {0}). \end{aligned}$$Finally, we compute the complete expression, which is for \(\eta =(\eta _{1},\eta _{2}) \in \mathfrak {g}\) and \(x=(E,v) \in \mathcal {G}\)
$$\begin{aligned}&{\left[ Z(x) \bigl [\mathbf {d}_{1} (\mathbf {d}_{2} \mathcal {H}(x, \mathbf {0},t))[x\eta ] \bigr ]\right] _{\mathfrak {g}}^{\vee }} \nonumber \\&\quad = K {\left[ \mathbf {d}_{1} (\mathbf {d}_{2} \mathcal {H}(x,\mathbf {0},t)) [E\eta _{1},\eta _{2}]\right] _{\mathfrak {g}}^{\vee }} \end{aligned}$$(111)$$\begin{aligned}&\quad = -K {\left[ (\left[ \eta _{2}\right] _{\mathfrak {se}}^{\wedge } , \mathbf {0})\right] _{\mathfrak {g}}^{\vee }} \end{aligned}$$(112)$$\begin{aligned}&\quad = -K \begin{pmatrix} \mathbf {0}_{6\times 6} &{} \mathbbm {1}_{6} \\ \mathbf {0}_{6\times 6} &{} \mathbf {0}_{6\times 6} \end{pmatrix} {\left[ \eta \right] _{\mathfrak {g}}^{\vee }}. \end{aligned}$$(113) -
5.
The following duality is vaild
$$\begin{aligned} \begin{aligned} \mathbf {d}_{2}(\mathbf {d}_{1} \mathcal {H}(x,\mathbf {0},t)) =&(\mathbf {d}_{1}(\mathbf {d}_{2} \mathcal {H}(x,\mathbf {0},t)))^{*} \\ =&- (\mathbf {d}_{x}f(x))^{*}, \end{aligned} \end{aligned}$$(114)as well as the following duality rule for linear operators \(f,g: \mathfrak {g}\rightarrow \mathfrak {g}^{*}\) (i.e., \(f^{*},g^{*}: \mathfrak {g}\rightarrow \mathfrak {g}^{*}\) by the identification \(\mathfrak {g}^{**} = \mathfrak {g}\)) and \(\eta , \xi \in \mathfrak {g}\),
$$\begin{aligned} \begin{aligned}&\langle (g^{*} \circ f^{*})(\eta ) ,\xi \rangle _{{\text {Id}}} = \langle f^{*}(\eta ), g(\xi ) \rangle _{{\text {Id}}} \\&\quad = \langle \eta , (f\circ g)(\xi ) \rangle _{ {\text {Id}}} = \langle (f\circ g)^{*}(\eta ), \xi \rangle _{{\text {Id}}}, \end{aligned} \end{aligned}$$(115)resulting in
$$\begin{aligned} (g^{*} \circ f^{*}) = (f \circ g)^{*}. \end{aligned}$$(116)Note that for \(\mathfrak {g}= \mathfrak {se}_{3}\) we replace the Riemannian metric \(\langle \cdot , \cdot \rangle \) by the trace, and that the dual notation can be replaced by the transpose.
Applying the \({\left[ \cdot \right] _{\mathfrak {g}}^{\vee }}\) operation for \(\eta \in \mathfrak {g}\) results in
$$\begin{aligned}&{\left[ T_{{\text {Id}}} L_{x}^{*} \circ \mathbf {d}_{2}(\mathbf {d}_{1} \mathcal {H}(x,0,t)) \circ Z(x)[\eta ]\right] _{\mathfrak {g}}^{\vee }} \\&\quad \mathop {=}\limits ^{(114)} -{\left[ T_{{\text {Id}}} L_{x}^{*} \circ (\mathbf {d}f(x))^{*} \circ Z(x)[\eta ]\right] _{\mathfrak {g}}^{\vee }} \\&\quad \mathop {=}\limits ^{(116)} -{\left[ (\mathbf {d}f(x) \circ T_{{\text {Id}}} L_{x})^{*} \circ Z(x)[\eta ]\right] _{\mathfrak {g}}^{\vee }} \\&\quad \mathop {=}\limits ^{(113)} - \begin{pmatrix} \mathbf {0}_{6\times 6} &{}\quad \mathbf {0}_{6\times 6} \\ \mathbbm {1}_{6} &{}\quad \mathbf {0}_{6\times 6} \end{pmatrix} {\left[ Z(x)[\eta ]\right] _{\mathfrak {g}}^{\vee }} \\&\quad = - \begin{pmatrix} \mathbf {0}_{6\times 6} &{}\quad \mathbf {0}_{6\times 6} \\ \mathbbm {1}_{6} &{}\quad \mathbf {0}_{6\times 6} \end{pmatrix}K(t){\left[ \eta \right] _{\mathfrak {g}}^{\vee }} . \end{aligned}$$ -
6.
For \(\eta = (\eta _{1}, \eta _{2}) \in \mathfrak {g}\) and the definition of the Riemannian Hessian, we obtain
$$\begin{aligned} {\text {Hess}}_{2} \mathcal {H} (x,\mu ,t) [ \eta ] = \nabla _{(\eta _{1},\eta _{2})} \mathbf {d}_{2} \mathcal {H}(x,\mu ,t) . \end{aligned}$$(117)The Riemannian gradient of the Hamiltonian regarding the second component can be computed for \(x=(E,v)\in \mathcal {G}\) as
$$\begin{aligned}&\mathbf {d}_{2} \mathcal {H} (x,\mu , t) \nonumber \\&\quad = \left( - e^{\alpha (t-t_{0})} \left[ S_{1}^{-1}{\left[ \mu _{1}\right] _{\mathfrak {se}}^{\vee }}\right] _{\mathfrak {se}}^{\wedge } - \left[ v\right] _{\mathfrak {se}}^{\wedge }, - e^{\alpha (t-t_{0})} S_{2}^{-1} \mu _{2} \right) . \end{aligned}$$(118)Inserting (118) into (117) results in
$$\begin{aligned}&e^{-\alpha (t-t_{0})}{\text {Hess}}_{2} \mathcal {H} (x,\mu ,t) [\eta ] \\&\quad = - \nabla _{(\eta _{1}, \eta _{2})} \left( \left[ S_{1}^{-1}{\left[ \mu _{1}\right] _{\mathfrak {se}}^{\vee }}\right] _{\mathfrak {se}}^{\wedge } + \left[ v\right] _{\mathfrak {se}}^{\wedge } , S_{2}^{-1} \mu _{2} \right) \\&\quad = - {\text {Pr}}_{\mathfrak {g}}\left( \mathbf {d}_{\mu }\left( \left[ S_{1}^{-1}{\left[ \mu _{1}\right] _{\mathfrak {se}}^{\vee }}\right] _{\mathfrak {se}}^{\wedge } + \left[ v\right] _{\mathfrak {se}}^{\wedge }\right) [\eta ],\mathbf {d}_{\mu }(S_{2}^{-1}\mu _{2})[\eta ] \right) \\&\quad = - \left( {\text {Pr}} \left( \left[ S_{1}^{-1}{\left[ \eta _{1}\right] _{\mathfrak {se}}^{\vee }}\right] _{\mathfrak {se}}^{\wedge } \right) , S_{2}^{-1}\eta _{2} \right) \\&\quad = - \left( \left[ S_{1}^{-1} {\left[ \eta _{1}\right] _{\mathfrak {se}}^{\vee }}\right] _{\mathfrak {se}}^{\wedge } , S_{2}^{-1}\eta _{2} \right) , \end{aligned}$$where \({\text {Pr}}_{\mathfrak {g}}: \mathbb {R}^{4\times 4} \times \mathbb {R}^{6} \rightarrow \mathfrak {g}\) denotes the projection onto the Lie algebra \(\mathfrak {g}\). Note that the second component of the projection is trivial.
This result coincides with [46] where the Hessian of the Hamiltonian regarding the second component is computed directly. Applying the \({\left[ \cdot \right] _{\mathfrak {g}}^{\vee }}\)operation leads to
$$\begin{aligned}&{\left[ {\text {Hess}}_{2} \mathcal {H} (x,\mu ,t) [T_{{\text {Id}}}L_{x} \eta ]\right] _{\mathfrak {g}}^{\vee }} \\&\quad = - e^{\alpha (t-t_{0})} {\left[ \left[ S_{1}^{-1} {\left[ \eta _{1}\right] _{\mathfrak {se}}^{\vee }}\right] _{\mathfrak {se}}^{\wedge } , S_{2}^{-1}\eta _{2}\right] _{\mathfrak {g}}^{\vee }} \\&\quad = -e^{\alpha (t-t_{0})} ((S_{1}^{-1} {\left[ \eta _{1}\right] _{\mathfrak {se}}^{\vee }})^{\top }, (S_{2}^{-1}\eta _{2})^{\top })^{\top } \\&\quad = -e^{\alpha (t-t_{0})} \underbrace{\begin{pmatrix} S_{1}^{-1} &{} \mathbf {0}_{6\times 6} \\ \mathbf {0}_{6 \times 6} &{} S_{2}^{-1} \end{pmatrix}}_{=:S^{-1}} {\left[ \eta \right] _{\mathfrak {g}}^{\vee }}. \end{aligned}$$Now we apply the \({\left[ \cdot \right] _{\mathfrak {g}}^{\vee }}\)-operation to the expression \(Z(x) \circ {\text {Hess}}_{2} \mathcal {H}(x,\mathbf {0},t) \circ Z(x)\):
$$\begin{aligned}&{\left[ Z(x)\bigl [ {\text {Hess}}_{2} \mathcal {H}(x,\mathbf {0},t)\bigl [Z(x)[\eta ]\bigr ]\bigr ]\right] _{\mathfrak {g}}^{\vee }} \\&\quad = K(t) {\left[ {\text {Hess}}_{2} \mathcal {H}(x,\mathbf {0},t)[Z(x)[\eta ]]\right] _{\mathfrak {g}}^{\vee }} \\&\quad = -e^{\alpha (t-t_{0})} K(t)S^{-1} {\left[ Z(x)[\eta ]\right] _{\mathfrak {g}}^{\vee }} \\&\quad = -e^{\alpha (t-t_{0})} K(t)S^{-1}K(t){\left[ \eta \right] _{\mathfrak {g}}^{\vee }} . \end{aligned}$$
\(\square \)
Appendix 3: Christoffel Symbols
The Christoffel symbols \(\varGamma _{ij}^{k}, i,j,k \in \{1,\dots ,6\}\) for the Riemannian connection on \({\text {SE}}_{3}\) are given by
and zero otherwise. Note that this Christoffel symbols are similar to these of the kinematic connection in [60]. However, for the Riemannian connection, we need to switch the indexes i and j.
Appendix 4: Derivations for Extended Kalman Filter
The function \(\varPhi : \mathbb {R}^{12} \rightarrow \mathbb {R}^{12\times 12}\) in Alg. 2 is
whereas the function \(\varPhi _{{\text {SE}}_{3}}\) is given in [49, Section 10] (cf. [13, Eq. (17)]).
1.1 Derivations for Nonlinear Observations
The expression of \(H_{l}\) that is defined in [13, Eq. (59)] is simply the Riemannian gradient of the observation function \(h_{z}\), i.e.,
where \(h_k\) is defined as in (92); and the \(\mathbf {d}h_{z}\) can be computed component-wise (for \(j=1,2\)) for \(x(t_{l})=(E(t_{l}),v(t_{l}))\) by the directional derivative for a direction \(x\eta \in T_{x}\mathcal {G}.\)
where the third line follows from the definition of the Riemannian metric on \({\text {SE}}_{3}\), i.e., \(\langle \eta , \xi \rangle _{{\text {Id}}} = \eta ^{\top }\xi \), and the fact that the trace is cyclic. By projection of \(\rho _{k}^{1}(x(t_{l}))\) onto the Lie algebra \(\mathfrak {se}_{3}\) and by vectorization, we obtain the Riemannian gradient. Stacking the vectors leads to the Jacobian \(H_{l} \in \mathbb {R}^{2\times 12}\), which is provided through
Next, we consider the calculation of the function J(t) in Alg. 2 in line 3. Following [13], J(t) can be calculated as
where the differential of \(F(t) = \mathbf {d}f(x(t))\) can be computed as
For a diagonal weighting matrix S, we find that in (124) the function C can be computed for diagonal weighting matrices S as
where \(\varXi = -{\text {diag}}((S_{22}+S_{33},S_{11}+S_{33}, S_{11}+S_{22} )^{\top })\), and the adjoint in (124) can be computed with (82).
Rights and permissions
About this article
Cite this article
Berger, J., Lenzen, F., Becker, F. et al. Second-Order Recursive Filtering on the Rigid-Motion Lie Group \({\text {SE}}_{3}\) Based on Nonlinear Observations. J Math Imaging Vis 58, 102–129 (2017). https://doi.org/10.1007/s10851-016-0693-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-016-0693-1