Abstract
Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The \(n-x\) plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only N / 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter p in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter p on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters p and polynomial size N, especially in reducing the computation time and the number of operations utilized.
Similar content being viewed by others
References
Lau, T.S.: Theory of canonical moments and its applications in polynomial regression—part I. Purdue University Technical Reports, pp. 1–73 (1983)
Sadjang, P.N., Koepf, W., Foupouagnigni, M.: On moments of classical orthogonal polynomials. J. Math. Anal. Appl. 424(1), 122–151 (2015)
Jassim, W.A., Raveendran, P., Mukundan, R.: New orthogonal polynomials for speech signal and image processing. IET Signal Process. 6(8), 713–723 (2012)
Alt, F.L.: Digital pattern recognition by moments. J. ACM 9(2), 240–258 (1962)
Jassim, W.A., Raveendran, P.: Face recognition using discrete Tchebichef–Krawtchouk transform. In: 2012 IEEE International Symposium on Multimedia (ISM), pp. 120–127 (2012)
Jassim, W.A., Paramesran, R., Zilany, M.S.A.: Enhancing noisy speech signals using orthogonal moments. IET Signal Process. 8(8), 891–905 (2014)
Yap, P.-T., Paramesran, R.: Local watermarks based on Krawtchouk moments. In: TENCON 2004. 2004 IEEE Region 10 Conference, pp. 73–76 (2004)
Rivero-Castillo, D., Pijeira, H., Assunçao, P.: Edge detection based on Krawtchouk polynomials. J. Comput. Appl. Math. 284, 244–250 (2015)
Abdulhussain, S.H., Ramli, A.R., Mahmmod, B.M., Al-Haddad, S.A.R., Jassim, W.A.: Image edge detection operators based on orthogonal polynomials. Int. J. Image Data Fusion 8(3), 293–308 (2017)
Teague, M.R.: Image analysis via the general theory of moments. JOSA 70(8), 920–930 (1980)
Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis using Hahn moments. Pattern Anal. Mach. Intell. IEEE Trans. 29(11), 2057–2062 (2007)
Abdulhussain, S.H., Ramli, A.R., Al-Haddad, S.A.R., Mahmmod, B.M., Jassim, W.A.: On computational aspects of Tchebichef polynomials for higher polynomial order. IEEE Access 5, 2470–2478 (2017)
Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. Image Process. IEEE Trans. 10(9), 1357–1364 (2001)
Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis by Krawtchouk moments. Image Process. IEEE Trans. 12(11), 1367–1377 (2003)
Nikiforov, A.F., Uvarov, V.B., Suslov, S.K.: Classical orthogonal polynomials of a discrete variable. In: Fletcher, C.A.J., Glowinski, R., Hillebrandt, W., Holt, M., Hut, P., Keller, H.B., Killeen, J., Orszag, S.A., Rusanov, V.V. (eds.) Classical Orthogonal Polynomials of a Discrete Variable, pp. 18–54. Springer-Verlag, Berlin, Heidelberg (1991)
Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)
Yap, P.T., Raveendran, P., Ong, S.H.: Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction. In: Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN ’02), vol. 1, pp. 908–912 (2002). doi:10.1109/IJCNN.2002.1005595
Zhang, G., Luo, Z., Fu, B., Li, B., Liao, J., Fan, X., Xi, Z.: A symmetry and bi-recursive algorithm of accurately computing Krawtchouk moments. Pattern Recognit. Lett. 31(7), 548–554 (2010)
Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their q-Analogues. Springer, Berlin (2010)
Foncannon, J.J.: Irresistible integrals: symbolics, analysis and experiments in the evaluation of integrals. Math. Intell. 28(3), 65–68 (2006)
Thung, K.-H., Paramesran, R., Lim, C.-L.: Content-based image quality metric using similarity measure of moment vectors. Pattern Recognit. 45(6), 2193–2204 (2012)
Zhu, H., Liu, M., Shu, H., Zhang, H., Luo, L.: General form for obtaining discrete orthogonal moments. IET Image Process. 4(5), 335–352 (2010)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1964)
Chihara, L., Stanton, D.: Zeros of generalized Krawtchouk polynomials. J. Approx. Theory 60(1), 43–57 (1990)
Fienup, J.R.: Invariant error metrics for image reconstruction. Appl. Opt. 36(32), 8352–8357 (1997)
AT&T Corp: The database of faces (2016). http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. Accessed 01 Jan 2016
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abdulhussain, S.H., Ramli, A.R., Al-Haddad, S.A.R. et al. Fast Recursive Computation of Krawtchouk Polynomials. J Math Imaging Vis 60, 285–303 (2018). https://doi.org/10.1007/s10851-017-0758-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0758-9