Abstract
We review the broad variety of methods that have been proposed for anomaly detection in images. Most methods found in the literature have in mind a particular application. Yet we focus on a classification of the methods based on the structural assumption they make on the “normal” image, assumed to obey a “background model.” Five different structural assumptions emerge for the background model. Our analysis leads us to reformulate the best representative algorithms in each class by attaching to them an a-contrario detection that controls the number of false positives and thus deriving a uniform detection scheme for all. By combining the most general structural assumptions expressing the background’s normality with the proposed generic statistical detection tool, we end up proposing several generic algorithms that seem to generalize or reconcile most methods. We compare the six best representatives of our proposed classes of algorithms on anomalous images taken from classic papers on the subject, and on a synthetic database. Our conclusion hints that it is possible to perform automatic anomaly detection on a single image.
Similar content being viewed by others
References
Adler, A., Elad, M., Hel-Or, Y., Rivlin, E.: Sparse coding with anomaly detection. J. Signal Process. Syst. 79(2), 179–188 (2015)
Aharon, M., Elad, M., Bruckstein, A., et al.: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311 (2006)
Aiger, D., Talbot, H.: The phase only transform for unsupervised surface defect detection. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 295–302. IEEE (2010)
An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, vol. 2, pp. 1–18
Ashton, E.A.: Detection of subpixel anomalies in multispectral infrared imagery using an adaptive bayesian classifier. IEEE Trans. Geosci. Remote Sens. 36(2), 506–517 (1998)
Banerjee, A., Burlina, P., Diehl, C.: A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 44(8), 2282–2291 (2006)
Bland, J.M., Altman, D.G.: Multiple significance tests: the bonferroni method. Br. Med. J. 310(6973), 170 (1995)
Boiman, O., Irani, M.: Detecting irregularities in images and in video. Int. J. Comput. Vis. 74(1), 17–31 (2007)
Boracchi, G., Carrera, D., Wohlberg, B.: Novelty detection in images by sparse representations. In: 2014 IEEE Symposium on Intelligent Embedded Systems, pp. 47–54. IEEE (2014)
Boracchi, G., Roveri, M.: Exploiting self-similarity for change detection. In: 2014 International Joint Conference on Neural Networks, pp. 3339–3346. IEEE (2014)
Borji, A., Itti, L.: Exploiting local and global patch rarities for saliency detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–485. IEEE (2012)
Bovolo, F., Bruzzone, L.: An adaptive multiscale approach to unsupervised change detection in multitemporal sar images. In: 2005. IEEE International Conference on Image Processing, vol. 1, pp. I–665. IEEE (2005)
Bovolo, F., Bruzzone, L.: A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans. Geosci. Remote Sens. 45(1), 218–236 (2007)
Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, pp. 155–162 (2006)
Bruzzone, L., Prieto, D.F.: An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Image Process. 11(4), 452–466 (2002)
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65. IEEE (2005)
Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76(2), 123–139 (2008)
Carlotto, M.J.: A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 374–387 (2005)
Carrera, D., Boracchi, G., Foi, A., Wohlberg, B.: Detecting anomalous structures by convolutional sparse models. In: 2015 International Joint Conference on Neural Networks, pp. 1–8. IEEE (2015)
Carrera, D., Boracchi, G., Foi, A., Wohlberg, B.: Scale-invariant anomaly detection with multiscale group-sparse models. In: 2016 IEEE International Conference on Image Processing, pp. 3892–3896. IEEE (2016)
Carrera, D., Manganini, F., Boracchi, G., Lanzarone, E.: Defect detection in sem images of nanofibrous materials. IEEE Trans. Ind. Inform. 13(2), 551–561 (2017)
Celik, T.: Change detection in satellite images using a genetic algorithm approach. IEEE Geosci. Remote Sens. Lett. 7(2), 386–390 (2010)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15 (2009)
Chang, C.Y., Li, C., Chang, J.W., Jeng, M.: An unsupervised neural network approach for automatic semiconductor wafer defect inspection. Expert Syst. Appl. 36(1), 950–958 (2009)
Chen, J.Y., Reed, I.S.: A detection algorithm for optical targets in clutter. IEEE Trans. Aerosp. Electron. Syst. 1, 46–59 (1987)
Chen, X.: A new generalization of Chebyshev inequality for random vectors. arXiv preprint arXiv:0707.0805 (2007)
Clement, M.A., Kilsby, C.G., Moore, P.: Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 11(2), 152–168 (2017)
Cohen, F.S., Fan, Z., Attali, S.: Automated inspection of textile fabrics using textural models. IEEE Trans. Pattern Anal. Mach. Intell. 8, 803–808 (1991)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)
Colom, M., Buades, A.: Analysis and extension of the Ponomarenko et al. method, estimating a noise curve from a single image. Image Process. Online 3, 173–197 (2013)
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3449–3456. IEEE (2011)
Dagobert, T.: Evaluation of high precision low baseline stereo vision algorithms. Université Paris-Saclay, Theses (2017)
Davy, A., Ehret, T., Morel, J.M., Delbracio, M.: Reducing anomaly detection in images to detection in noise. In: 2018 IEEE International Conference on Image Processing, pp. 1058–1062. IEEE (2018)
Desolneux, A., Moisan, L., Morel, J.M.: Gestalt Theory and Computer Vision, pp. 71–101. Springer Netherlands, Dordrecht (2004)
Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, vol. 34. Springer, Berlin (2007)
Di Martino, J.M., Facciolo, G., Meinhardt-Llopis, E.: Poisson image editing. Image Process. Online 6, 300–325 (2016)
Ding, X., Li, Y., Belatreche, A., Maguire, L.P.: An experimental evaluation of novelty detection methods. Neurocomputing 135, 313–327 (2014)
Dom, B.E., Brecher, V.: Recent advances in the automatic inspection of integrated circuits for pattern defects. Mach. Vis. Appl. 8(1), 5–19 (1995)
Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 49(5), 1578–1589 (2011)
Du, Q., Kopriva, I.: Automated target detection and discrimination using constrained kurtosis maximization. IEEE Geosci. Remote Sens. Lett. 5(1), 38–42 (2008)
Duran, O., Petrou, M.: A time-efficient clustering method for pure class selection. In: 2005 IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 4–pp. IEEE (2005)
Duran, O., Petrou, M.: A time-efficient method for anomaly detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 45(12), 3894–3904 (2007)
Duran, O., Petrou, M., Hathaway, D., Nothard, J.: Anomaly detection through adaptive background class extraction from dynamic hyperspectral data. In: 2006. Proceedings of the 7th Nordic Signal Processing Symposium, pp. 234–237. IEEE (2006)
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV (1999)
Elhamifar, E., Sapiro, G., Vidal, R.: See all by looking at a few: Sparse modeling for finding representative objects. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1600–1607. IEEE (2012)
Ferrentino, E., Nunziata, F., Migliaccio, M., Marino, A.: Multi-polarization methods to detect damages related to earthquakes, pp. 1938–1941 (2018)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Readings in Computer Vision, pp. 726–740. Elsevier (1987)
Fowler, J.E., Du, Q.: Anomaly detection and reconstruction from random projections. IEEE Trans. Image Process. 21(1), 184–195 (2012)
Galerne, B., Gousseau, Y., Morel, J.M.: Micro-texture synthesis by phase randomization. Image Process. Online 1, 213–237 (2011)
Galerne, B., Gousseau, Y., Morel, J.M.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)
Gao, D., Mahadevan, V., Vasconcelos, N.: The discriminant center-surround hypothesis for bottom-up saliency. In: Advances in Neural Information Processing Systems, pp. 497–504 (2008)
Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process. Online 2, 35–55 (2012)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)
Goldman, A., Cohen, I.: Anomaly detection based on an iterative local statistics approach. Signal Process. 84(7), 1225–1229 (2004)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)
Grosjean, B., Moisan, L.: A-contrario detectability of spots in textured backgrounds. J. Math. Imaging Vis. 33(3), 313–337 (2009)
Gurram, P., Kwon, H., Han, T.: Sparse kernel-based hyperspectral anomaly detection. IEEE Geosci. Remote Sens. Lett. 9(5), 943–947 (2012)
Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: DaWaK (2002)
Hazel, G.G.: Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection. IEEE Trans. Geosci. Remote Sens. 38(3), 1199–1211 (2000)
Hiroi, T., Maeda, S., Kubota, H., Watanabe, K., Nakagawa, Y.: Precise visual inspection for lsi wafer patterns using subpixel image alignment. In: 1994, Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 26–34. IEEE (1994)
Hochberg, Y., Tamhane, A.: Multiple comparison procedures (1987)
Hoffmann, H.: Kernel pca for novelty detection. Pattern Recognit. 40(3), 863–874 (2007)
Honda, T., Nayar, S.K.: Finding“ anomalies” in an arbitrary image. In: 2001. IEEE International Conference on Computer Vision, vol. 2, pp. 516–523. IEEE (2001)
Huang, X., Shen, C., Boix, X., Zhao, Q.: Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks. In: ICCV (2015)
Hytla, P., Hardie, R.C., Eismann, M.T., Meola, J.: Anomaly detection in hyperspectral imagery: a comparison of methods using seasonal data. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, vol. 6565, p. 656506. International Society for Optics and Photonics (2007)
Iivarinen, J.: Surface defect detection with histogram-based texture features. In: Intelligent Robots and Computer Vision XIX: Algorithms, Techniques, and Active Vision, vol. 4197, pp. 140–146. International Society for Optics and Photonics (2000)
Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40(10), 1489–1506 (2000)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Jia, H., Murphey, Y.L., Shi, J., Chang, T.S.: An intelligent real-time vision system for surface defect detection. In: 2004, International Conference on Pattern Recognition, vol. 3, pp. 239–242. IEEE (2004)
Jia, M., Wang, L.: Novel class-relativity non-local means with principal component analysis for multitemporal sar image change detection. Int. J. Remote Sens. 39(4), 1068–1091 (2018)
Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290(5802), 91 (1981)
Kumar, A.: Neural network based detection of local textile defects. Pattern Recognit. 36(7), 1645–1659 (2003)
Kwon, H., Nasrabadi, N.M.: Kernel rx-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 388–397 (2005)
Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1784–1797 (2006)
Lezama, J., Grompone von Gioi, R., Randall, G., Morel, J.M.: Finding vanishing points via point alignments in image primal and dual domains. In: 2014, IEEE Conference on Computer Vision and Pattern Recognition (2014)
Lezama, J., Randall, G., Grompone von Gioi, R.: Vanishing point detection in urban scenes using point alignments. Image Process. Online 7, 131–164 (2017)
Li, J., Zhang, H., Zhang, L., Ma, L.: Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(6), 2523–2533 (2015)
Li, S., Wang, W., Qi, H., Ayhan, B., Kwan, C., Vance, S.: Low-rank tensor decomposition based anomaly detection for hyperspectral imagery. In: 2015 IEEE International Conference on Image Processing, pp. 4525–4529 (2015)
Li, Y., Martinis, S., Plank, S., Ludwig, R.: An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. Int. J. Appl. Earth Observ. Geoinf. 73(June), 123–135 (2018)
Liu, H., Zhou, W., Kuang, Q., Cao, L., Gao, B.: Defect detection of ic wafer based on spectral subtraction. IEEE Trans. Semicond. Manuf. 23(1), 141–147 (2010)
Liu, S., Bruzzone, L., Bovolo, F., Du, P.: Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Trans. Geosci. Remote Sens. 53(1), 244–260 (2015)
Liu, S., Chi, M., Zou, Y., Samat, A., Benediktsson, J.A., Plaza, A.: Oil spill detection via multitemporal optical remote sensing images: a change detection perspective. IEEE Geosci. Remote Sens. Lett. 14(3), 324–328 (2017)
Lowe, D.G.: Object recognition from local scale-invariant features. In: 1999, IEEE International Conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)
Madar, E., Malah, D., Barzohar, M.: Non-Gaussian background modeling for anomaly detection in hyperspectral images. In: 2011 19th European Signal Processing Conference, pp. 1125–1129. IEEE (2011)
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1975–1981. IEEE (2010)
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: International Conference on Machine Learning, pp. 689–696. ACM (2009)
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: International Conference on Computer Vision, pp. 2272–2279. IEEE (2009)
Margalit, A., Reed, I., Gagliardi, R.: Adaptive optical target detection using correlated images. IEEE Trans. Aerosp. Electron. Syst. 3, 394–405 (1985)
Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139–1146 (2013)
Markou, M., Singh, S.: Novelty detection: a review -part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)
Masson, P., Pieczynski, W.: Sem algorithm and unsupervised statistical segmentation of satellite images. IEEE Trans. Geosci. Remote Sens. 31(3), 618–633 (1993)
Matteoli, S., Carnesecchi, F., Diani, M., Corsini, G., Chiarantini, L.: Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set. In: Image and Signal Processing for Remote Sensing XIII, vol. 6748, p. 67480E. International Society for Optics and Photonics (2007)
Matteoli, S., Diani, M., Corsini, G.: A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp. Electron. Syst. Mag. 25(7), 5–28 (2010)
Mercier, G., Girard-Ardhuin, F.: Partially supervised oil-slick detection by sar imagery using kernel expansion. IEEE Trans. Geosci. Remote Sens. 44(10), 2839–2846 (2006)
Mishne, G., Cohen, I.: Multiscale anomaly detection using diffusion maps. IEEE J. Sel. Top. Signal Process. 7(1), 111–123 (2013)
Mishne, G., Cohen, I.: Multiscale anomaly detection using diffusion maps and saliency score. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2823–2827. IEEE (2014)
Mishne, G., Shaham, U., Cloninger, A., Cohen, I.: Diffusion nets. Appl. Comput. Harmon. Anal. (2017). https://doi.org/10.1016/j.acha.2017.08.007
Moisan, L., Moulon, P., Monasse, P.: Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Process. Online 2, 56–73 (2012)
Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vis. 57(3), 201–218 (2004)
Mousazadeh, S., Cohen, I.: Two dimensional noncausal ar-arch model: Stationary conditions, parameter estimation and its application to anomaly detection. Signal Process. 98, 322–336 (2014)
Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 433–440. IEEE (2011)
Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by cnn-based self-similarity. Sensors 18(1), 209 (2018)
Navarro, J.: Can the bounds in the multivariate chebyshev inequality be attained? Stat. Probab. Lett. 91, 1–5 (2014)
Ngan, H.Y., Pang, G.K., Yung, N.H.: Automated fabric defect detection—a review. Image Vis. Comput. 29(7), 442–458 (2011)
Ngan, H.Y., Pang, G.K., Yung, S., Ng, M.K.: Wavelet based methods on patterned fabric defect detection. Pattern Recognit. 38(4), 559–576 (2005)
Olson, C.C., Judd, K.P., Nichols, J.M.: Manifold learning techniques for unsupervised anomaly detection. Expert Syst. Appl. 91, 374–385 (2018)
Oudre, L.: Automatic detection and removal of impulsive noise in audio signals. Image Process. Online 5, 267–281 (2015)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)
Patraucean, V., Grompone von Gioi, R., Ovsjanikov, M.: Detection of mirror-symmetric image patches. In: 2013, IEEE Conference on Computer Vision on Pattern Recognition (2013)
Patraucean, V., Gurdjos, P., von Gioi, R.G.: A parameterless ellipse and line segment detector with enhanced ellipse fitting. In: 2012, IEEE European Conference on Computer Vision (2012)
Penn, B.: Using self-organizing maps for anomaly detection in hyperspectral imagery. In: 2002, IEEE Aerospace Conference Proceedings, vol. 3, pp. 3–3. IEEE (2002)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)
Perng, D.B., Chen, S.H., Chang, Y.S.: A novel internal thread defect auto-inspection system. Int. J. Adv. Manuf. Technol. 47(5–8), 731–743 (2010)
Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014)
Ponomarenko, N.N., Lukin, V.V., Zriakhov, M., Kaarna, A., Astola, J.: An automatic approach to lossy compression of aviris images. In: 2007, IEEE International Geoscience and Remote Sensing Symposium, pp. 472–475. IEEE (2007)
Ranney, K.I., Soumekh, M.: Hyperspectral anomaly detection within the signal subspace. IEEE Geosci. Remote Sens. Lett. 3(3), 312–316 (2006)
Reed, I.S., Yu, X.: Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990)
Riche, N., Mancas, M., Duvinage, M., Mibulumukini, M., Gosselin, B., Dutoit, T.: Rare 2012: a multi-scale rarity-based saliency detection with its comparative statistical analysis. Signal Process. Image Commun. 28(6), 642–658 (2013)
Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)
Ruff, L., Görnitz, N., Deecke, L., Siddiqui, S.A., Vandermeulen, R., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4390–4399 (2018)
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. International Conference on Information Processing in Medical Imaging, pp. 146–157. Springer (2017)
Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)
Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, pp. 582–588 (2000)
Schweizer, S.M., Moura, J.M.: Hyperspectral imagery: clutter adaptation in anomaly detection. IEEE Trans. Inf. Theory 46(5), 1855–1871 (2000)
Seo, H.J., Milanfar, P.: Static and space–time visual saliency detection by self-resemblance. J. Vis. 9(12), 15–15 (2009)
Shankar, N., Zhong, Z.: Defect detection on semiconductor wafer surfaces. Microelectron. Eng. 77(3–4), 337–346 (2005)
Singer, A., Shkolnisky, Y., Nadler, B.: Diffusion interpretation of nonlocal neighborhood filters for signal denoising. SIAM J. Imaging Sci. 2(1), 118–139 (2009)
Soukup, D., Huber-Mörk, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. In: International Symposium on Visual Computing, pp. 668–677. Springer (2014)
Stein, D.W., Beaven, S.G., Hoff, L.E., Winter, E.M., Schaum, A.P., Stocker, A.D.: Anomaly detection from hyperspectral imagery. IEEE Signal Process. Mag. 19(1), 58–69 (2002)
Tarassenko, L., Hayton, P., Cerneaz, N., Brady, M.: Novelty detection for the identification of masses in mammograms (1995)
Tavakoli, H.R., Rahtu, E., Heikkilä, J.: Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: Scandinavian Conference on Image Analysis, pp. 666–675. Springer (2011)
Tax, D.M., Duin, R.P.: Outlier detection using classifier instability. In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition, pp. 593–601. Springer (1998)
Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)
Thonfeld, F., Feilhauer, H., Braun, M., Menz, G.: Robust change vector analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int. J. Appl. Earth Observ. Geoinf. 50, 131–140 (2016)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV (1998)
Tout, K.: Automatic vision system for surface inspection and monitoring: application to wheel inspection. Ph.D. thesis, Troyes University of Technology (UTT) (2018)
Tout, K., Cogranne, R., Retraint, F.: Fully automatic detection of anomalies on wheels surface using an adaptive accurate model and hypothesis testing theory. In: 2016 24th European Signal Processing Conference, pp. 508–512. IEEE (2016)
Tout, K., Retraint, F., Cogranne, R.: Automatic vision system for wheel surface inspection and monitoring. In: ASNT Annual Conference 2017, pp. 207–216 (2017)
Tsai, D.M., Hsieh, C.Y.: Automated surface inspection for directional textures. Image Vis. Comput. 18(1), 49–62 (1999)
Tsai, D.M., Huang, T.Y.: Automated surface inspection for statistical textures. Image Vis. Comput. 21(4), 307–323 (2003)
Tsai, D.M., Yang, C.H.: A quantile–quantile plot based pattern matching for defect detection. Pattern Recognit. Lett. 26(13), 1948–1962 (2005)
Tsai, D.M., Yang, R.H.: An eigenvalue-based similarity measure and its application in defect detection. Image Vis. Comput. 23(12), 1094–1101 (2005)
Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)
Washaya, P., Balz, T.: Sar coherence change detection of urban areas affected by disasters using sentinel-1 imagery. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 1857–1861 (2018)
Xie, P., Guan, S.U.: A golden-template self-generating method for patterned wafer inspection. Mach. Vis. Appl. 12(3), 149–156 (2000)
Xie, X.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7(3), 1–22 (2008)
Xie, X., Mirmehdi, M.: Texems: texture exemplars for defect detection on random textured surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1454–1464 (2007)
Yang, X.Z., Pang, G.K., Yung, N.H.C.: Discriminative fabric defect detection using adaptive wavelets. Opt. Eng. 41(12), 3116–3127 (2002)
Yeh, C.H., Wu, F.C., Ji, W.L., Huang, C.Y.: A wavelet-based approach in detecting visual defects on semiconductor wafer dies. IEEE Trans. Semicond. Manuf. 23(2), 284–292 (2010)
Zanetti, M., Bovolo, F., Bruzzone, L.: Rayleigh-rice mixture parameter estimation via em algorithm for change detection in multispectral images. IEEE Trans. Image Process. 24(12), 5004–5016 (2015)
Zanetti, M., Bruzzone, L.: A theoretical framework for change detection based on a compound multiclass statistical model of the difference image. IEEE Trans. Geosci. Remote Sens. 56(2), 1129–1143 (2018)
Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3313–3320. IEEE (2011)
Zontak, M., Cohen, I.: Defect detection in patterned wafers using anisotropic kernels. Mach. Vis. Appl. 21(2), 129–141 (2010)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Work supported by IDEX Paris-Saclay IDI 2016, ANR-11-IDEX-0003-02, ONR grant N00014-17-1-2552, CNES MISS project, Agencia Nacional de Investigación e Innovación (ANII, Uruguay) grant FCE_1_2017_135458, DGA Astrid ANR-17-ASTR-0013-01, DGA ANR-16-DEFA-0004-01, Programme ECOS Sud – UdelaR - Paris Descartes U17E04, and MENRT.
Appendix: Dual Formulation of Sparsity Models
Appendix: Dual Formulation of Sparsity Models
Sparsity-based variational methods lack the direct interpretation enjoyed by other methods as to the proper definition of an anomaly. By reviewing the first simplest method of this kind proposed in [9], we shall see that its dual interpretation points to the detection of the worst anomaly. Let D a dictionary representing “normal” image patches. For a given patch p, the normal patch corresponding to p is \(\hat{p}=D\hat{x}\) where
One can derive the following dual optimization problem: Let \(z = p-Dx\),
The Lagrangian is in this case
The dual problem is then
Consider first \(\inf _{z}\left( \frac{1}{2}\Vert z\Vert _2^2 - \eta ^Tz\right) \): This part is differentiable in z so that
therefore, the inf is achieved for \(z=\eta \). The inf is in this case
As for \(\inf _{x}(\lambda \Vert x\Vert _1 - \eta ^TDx)\): This part is not differentiable (because not smooth); nevertheless, the subgradient exists. Let v such that \(\Vert x\Vert _1 = v^Tx\) (for all i \(v_i \in {-1, 1}\)). The subgradient of \(\Vert .\Vert _1\) gives v.
A necessary condition to attain the infimum is then \(0 \in \{\lambda v - D^T\eta \}\). This leads to \(v = \frac{D^T\eta }{\lambda }\) with the condition that \(\Vert D^T\eta \Vert _\infty \le \lambda \) (because \(\Vert v\Vert _\infty \le 1\)) which can be injected into the previous equation which gives
Finally,
Therefore, the dual problem is
which is equivalent to
It can be reformulated in a penalized version as
While \(D\hat{x}\) represents the “normal” part of the patch p, \(\hat{\eta }\) represents the anomaly. Indeed, the condition \(\Vert D^T\eta \Vert _\infty \le \lambda \) imposes to \(\eta \) to be far from the patches represented by D. Moreover, for a solution \(\eta ^*\) of the dual to exist (and so that the duality gap does not exist) it requires that \(\eta ^* = p - Dx^*\), i.e., \(p = Dx^* + \eta ^*\) which confirms the previous observation. Notice that the solution of (15) exists by an obvious compactness argument and is unique by the strict convexity of the dual functional.
Rights and permissions
About this article
Cite this article
Ehret, T., Davy, A., Morel, JM. et al. Image Anomalies: A Review and Synthesis of Detection Methods. J Math Imaging Vis 61, 710–743 (2019). https://doi.org/10.1007/s10851-019-00885-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-019-00885-0