Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Image Anomalies: A Review and Synthesis of Detection Methods

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We review the broad variety of methods that have been proposed for anomaly detection in images. Most methods found in the literature have in mind a particular application. Yet we focus on a classification of the methods based on the structural assumption they make on the “normal” image, assumed to obey a “background model.” Five different structural assumptions emerge for the background model. Our analysis leads us to reformulate the best representative algorithms in each class by attaching to them an a-contrario detection that controls the number of false positives and thus deriving a uniform detection scheme for all. By combining the most general structural assumptions expressing the background’s normality with the proposed generic statistical detection tool, we end up proposing several generic algorithms that seem to generalize or reconcile most methods. We compare the six best representatives of our proposed classes of algorithms on anomalous images taken from classic papers on the subject, and on a synthetic database. Our conclusion hints that it is possible to perform automatic anomaly detection on a single image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adler, A., Elad, M., Hel-Or, Y., Rivlin, E.: Sparse coding with anomaly detection. J. Signal Process. Syst. 79(2), 179–188 (2015)

    Article  Google Scholar 

  2. Aharon, M., Elad, M., Bruckstein, A., et al.: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311 (2006)

    Article  MATH  Google Scholar 

  3. Aiger, D., Talbot, H.: The phase only transform for unsupervised surface defect detection. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 295–302. IEEE (2010)

  4. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, vol. 2, pp. 1–18

  5. Ashton, E.A.: Detection of subpixel anomalies in multispectral infrared imagery using an adaptive bayesian classifier. IEEE Trans. Geosci. Remote Sens. 36(2), 506–517 (1998)

    Article  Google Scholar 

  6. Banerjee, A., Burlina, P., Diehl, C.: A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 44(8), 2282–2291 (2006)

    Article  Google Scholar 

  7. Bland, J.M., Altman, D.G.: Multiple significance tests: the bonferroni method. Br. Med. J. 310(6973), 170 (1995)

    Article  Google Scholar 

  8. Boiman, O., Irani, M.: Detecting irregularities in images and in video. Int. J. Comput. Vis. 74(1), 17–31 (2007)

    Article  Google Scholar 

  9. Boracchi, G., Carrera, D., Wohlberg, B.: Novelty detection in images by sparse representations. In: 2014 IEEE Symposium on Intelligent Embedded Systems, pp. 47–54. IEEE (2014)

  10. Boracchi, G., Roveri, M.: Exploiting self-similarity for change detection. In: 2014 International Joint Conference on Neural Networks, pp. 3339–3346. IEEE (2014)

  11. Borji, A., Itti, L.: Exploiting local and global patch rarities for saliency detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–485. IEEE (2012)

  12. Bovolo, F., Bruzzone, L.: An adaptive multiscale approach to unsupervised change detection in multitemporal sar images. In: 2005. IEEE International Conference on Image Processing, vol. 1, pp. I–665. IEEE (2005)

  13. Bovolo, F., Bruzzone, L.: A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans. Geosci. Remote Sens. 45(1), 218–236 (2007)

    Article  Google Scholar 

  14. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, pp. 155–162 (2006)

  15. Bruzzone, L., Prieto, D.F.: An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Image Process. 11(4), 452–466 (2002)

    Article  Google Scholar 

  16. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65. IEEE (2005)

  17. Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76(2), 123–139 (2008)

    Article  Google Scholar 

  18. Carlotto, M.J.: A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 374–387 (2005)

    Article  Google Scholar 

  19. Carrera, D., Boracchi, G., Foi, A., Wohlberg, B.: Detecting anomalous structures by convolutional sparse models. In: 2015 International Joint Conference on Neural Networks, pp. 1–8. IEEE (2015)

  20. Carrera, D., Boracchi, G., Foi, A., Wohlberg, B.: Scale-invariant anomaly detection with multiscale group-sparse models. In: 2016 IEEE International Conference on Image Processing, pp. 3892–3896. IEEE (2016)

  21. Carrera, D., Manganini, F., Boracchi, G., Lanzarone, E.: Defect detection in sem images of nanofibrous materials. IEEE Trans. Ind. Inform. 13(2), 551–561 (2017)

    Article  Google Scholar 

  22. Celik, T.: Change detection in satellite images using a genetic algorithm approach. IEEE Geosci. Remote Sens. Lett. 7(2), 386–390 (2010)

    Article  Google Scholar 

  23. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15 (2009)

    Article  Google Scholar 

  24. Chang, C.Y., Li, C., Chang, J.W., Jeng, M.: An unsupervised neural network approach for automatic semiconductor wafer defect inspection. Expert Syst. Appl. 36(1), 950–958 (2009)

    Article  Google Scholar 

  25. Chen, J.Y., Reed, I.S.: A detection algorithm for optical targets in clutter. IEEE Trans. Aerosp. Electron. Syst. 1, 46–59 (1987)

    Article  Google Scholar 

  26. Chen, X.: A new generalization of Chebyshev inequality for random vectors. arXiv preprint arXiv:0707.0805 (2007)

  27. Clement, M.A., Kilsby, C.G., Moore, P.: Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 11(2), 152–168 (2017)

  28. Cohen, F.S., Fan, Z., Attali, S.: Automated inspection of textile fabrics using textural models. IEEE Trans. Pattern Anal. Mach. Intell. 8, 803–808 (1991)

    Article  Google Scholar 

  29. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Colom, M., Buades, A.: Analysis and extension of the Ponomarenko et al. method, estimating a noise curve from a single image. Image Process. Online 3, 173–197 (2013)

    Article  Google Scholar 

  31. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3449–3456. IEEE (2011)

  32. Dagobert, T.: Evaluation of high precision low baseline stereo vision algorithms. Université Paris-Saclay, Theses (2017)

  33. Davy, A., Ehret, T., Morel, J.M., Delbracio, M.: Reducing anomaly detection in images to detection in noise. In: 2018 IEEE International Conference on Image Processing, pp. 1058–1062. IEEE (2018)

  34. Desolneux, A., Moisan, L., Morel, J.M.: Gestalt Theory and Computer Vision, pp. 71–101. Springer Netherlands, Dordrecht (2004)

  35. Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, vol. 34. Springer, Berlin (2007)

    Google Scholar 

  36. Di Martino, J.M., Facciolo, G., Meinhardt-Llopis, E.: Poisson image editing. Image Process. Online 6, 300–325 (2016)

    Article  MathSciNet  Google Scholar 

  37. Ding, X., Li, Y., Belatreche, A., Maguire, L.P.: An experimental evaluation of novelty detection methods. Neurocomputing 135, 313–327 (2014)

    Article  Google Scholar 

  38. Dom, B.E., Brecher, V.: Recent advances in the automatic inspection of integrated circuits for pattern defects. Mach. Vis. Appl. 8(1), 5–19 (1995)

    Article  Google Scholar 

  39. Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 49(5), 1578–1589 (2011)

    Article  Google Scholar 

  40. Du, Q., Kopriva, I.: Automated target detection and discrimination using constrained kurtosis maximization. IEEE Geosci. Remote Sens. Lett. 5(1), 38–42 (2008)

    Article  Google Scholar 

  41. Duran, O., Petrou, M.: A time-efficient clustering method for pure class selection. In: 2005 IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 4–pp. IEEE (2005)

  42. Duran, O., Petrou, M.: A time-efficient method for anomaly detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 45(12), 3894–3904 (2007)

    Article  Google Scholar 

  43. Duran, O., Petrou, M., Hathaway, D., Nothard, J.: Anomaly detection through adaptive background class extraction from dynamic hyperspectral data. In: 2006. Proceedings of the 7th Nordic Signal Processing Symposium, pp. 234–237. IEEE (2006)

  44. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV (1999)

  45. Elhamifar, E., Sapiro, G., Vidal, R.: See all by looking at a few: Sparse modeling for finding representative objects. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1600–1607. IEEE (2012)

  46. Ferrentino, E., Nunziata, F., Migliaccio, M., Marino, A.: Multi-polarization methods to detect damages related to earthquakes, pp. 1938–1941 (2018)

  47. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Readings in Computer Vision, pp. 726–740. Elsevier (1987)

  48. Fowler, J.E., Du, Q.: Anomaly detection and reconstruction from random projections. IEEE Trans. Image Process. 21(1), 184–195 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Galerne, B., Gousseau, Y., Morel, J.M.: Micro-texture synthesis by phase randomization. Image Process. Online 1, 213–237 (2011)

    MATH  Google Scholar 

  50. Galerne, B., Gousseau, Y., Morel, J.M.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gao, D., Mahadevan, V., Vasconcelos, N.: The discriminant center-surround hypothesis for bottom-up saliency. In: Advances in Neural Information Processing Systems, pp. 497–504 (2008)

  52. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process. Online 2, 35–55 (2012)

    Article  Google Scholar 

  53. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  54. Goldman, A., Cohen, I.: Anomaly detection based on an iterative local statistics approach. Signal Process. 84(7), 1225–1229 (2004)

    Article  MATH  Google Scholar 

  55. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)

  56. Grosjean, B., Moisan, L.: A-contrario detectability of spots in textured backgrounds. J. Math. Imaging Vis. 33(3), 313–337 (2009)

    Article  MathSciNet  Google Scholar 

  57. Gurram, P., Kwon, H., Han, T.: Sparse kernel-based hyperspectral anomaly detection. IEEE Geosci. Remote Sens. Lett. 9(5), 943–947 (2012)

    Article  Google Scholar 

  58. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: DaWaK (2002)

  59. Hazel, G.G.: Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection. IEEE Trans. Geosci. Remote Sens. 38(3), 1199–1211 (2000)

    Article  Google Scholar 

  60. Hiroi, T., Maeda, S., Kubota, H., Watanabe, K., Nakagawa, Y.: Precise visual inspection for lsi wafer patterns using subpixel image alignment. In: 1994, Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 26–34. IEEE (1994)

  61. Hochberg, Y., Tamhane, A.: Multiple comparison procedures (1987)

  62. Hoffmann, H.: Kernel pca for novelty detection. Pattern Recognit. 40(3), 863–874 (2007)

    Article  MATH  Google Scholar 

  63. Honda, T., Nayar, S.K.: Finding“ anomalies” in an arbitrary image. In: 2001. IEEE International Conference on Computer Vision, vol. 2, pp. 516–523. IEEE (2001)

  64. Huang, X., Shen, C., Boix, X., Zhao, Q.: Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks. In: ICCV (2015)

  65. Hytla, P., Hardie, R.C., Eismann, M.T., Meola, J.: Anomaly detection in hyperspectral imagery: a comparison of methods using seasonal data. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, vol. 6565, p. 656506. International Society for Optics and Photonics (2007)

  66. Iivarinen, J.: Surface defect detection with histogram-based texture features. In: Intelligent Robots and Computer Vision XIX: Algorithms, Techniques, and Active Vision, vol. 4197, pp. 140–146. International Society for Optics and Photonics (2000)

  67. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40(10), 1489–1506 (2000)

    Article  Google Scholar 

  68. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  69. Jia, H., Murphey, Y.L., Shi, J., Chang, T.S.: An intelligent real-time vision system for surface defect detection. In: 2004, International Conference on Pattern Recognition, vol. 3, pp. 239–242. IEEE (2004)

  70. Jia, M., Wang, L.: Novel class-relativity non-local means with principal component analysis for multitemporal sar image change detection. Int. J. Remote Sens. 39(4), 1068–1091 (2018)

    Article  Google Scholar 

  71. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290(5802), 91 (1981)

    Article  Google Scholar 

  72. Kumar, A.: Neural network based detection of local textile defects. Pattern Recognit. 36(7), 1645–1659 (2003)

    Article  Google Scholar 

  73. Kwon, H., Nasrabadi, N.M.: Kernel rx-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 388–397 (2005)

    Article  Google Scholar 

  74. Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1784–1797 (2006)

    Article  Google Scholar 

  75. Lezama, J., Grompone von Gioi, R., Randall, G., Morel, J.M.: Finding vanishing points via point alignments in image primal and dual domains. In: 2014, IEEE Conference on Computer Vision and Pattern Recognition (2014)

  76. Lezama, J., Randall, G., Grompone von Gioi, R.: Vanishing point detection in urban scenes using point alignments. Image Process. Online 7, 131–164 (2017)

    Article  Google Scholar 

  77. Li, J., Zhang, H., Zhang, L., Ma, L.: Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(6), 2523–2533 (2015)

    Article  Google Scholar 

  78. Li, S., Wang, W., Qi, H., Ayhan, B., Kwan, C., Vance, S.: Low-rank tensor decomposition based anomaly detection for hyperspectral imagery. In: 2015 IEEE International Conference on Image Processing, pp. 4525–4529 (2015)

  79. Li, Y., Martinis, S., Plank, S., Ludwig, R.: An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. Int. J. Appl. Earth Observ. Geoinf. 73(June), 123–135 (2018)

    Article  Google Scholar 

  80. Liu, H., Zhou, W., Kuang, Q., Cao, L., Gao, B.: Defect detection of ic wafer based on spectral subtraction. IEEE Trans. Semicond. Manuf. 23(1), 141–147 (2010)

    Article  Google Scholar 

  81. Liu, S., Bruzzone, L., Bovolo, F., Du, P.: Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Trans. Geosci. Remote Sens. 53(1), 244–260 (2015)

    Article  Google Scholar 

  82. Liu, S., Chi, M., Zou, Y., Samat, A., Benediktsson, J.A., Plaza, A.: Oil spill detection via multitemporal optical remote sensing images: a change detection perspective. IEEE Geosci. Remote Sens. Lett. 14(3), 324–328 (2017)

    Article  Google Scholar 

  83. Lowe, D.G.: Object recognition from local scale-invariant features. In: 1999, IEEE International Conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)

  84. Madar, E., Malah, D., Barzohar, M.: Non-Gaussian background modeling for anomaly detection in hyperspectral images. In: 2011 19th European Signal Processing Conference, pp. 1125–1129. IEEE (2011)

  85. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1975–1981. IEEE (2010)

  86. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: International Conference on Machine Learning, pp. 689–696. ACM (2009)

  87. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: International Conference on Computer Vision, pp. 2272–2279. IEEE (2009)

  88. Margalit, A., Reed, I., Gagliardi, R.: Adaptive optical target detection using correlated images. IEEE Trans. Aerosp. Electron. Syst. 3, 394–405 (1985)

    Article  Google Scholar 

  89. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139–1146 (2013)

  90. Markou, M., Singh, S.: Novelty detection: a review -part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  91. Masson, P., Pieczynski, W.: Sem algorithm and unsupervised statistical segmentation of satellite images. IEEE Trans. Geosci. Remote Sens. 31(3), 618–633 (1993)

    Article  Google Scholar 

  92. Matteoli, S., Carnesecchi, F., Diani, M., Corsini, G., Chiarantini, L.: Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set. In: Image and Signal Processing for Remote Sensing XIII, vol. 6748, p. 67480E. International Society for Optics and Photonics (2007)

  93. Matteoli, S., Diani, M., Corsini, G.: A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp. Electron. Syst. Mag. 25(7), 5–28 (2010)

    Article  Google Scholar 

  94. Mercier, G., Girard-Ardhuin, F.: Partially supervised oil-slick detection by sar imagery using kernel expansion. IEEE Trans. Geosci. Remote Sens. 44(10), 2839–2846 (2006)

    Article  Google Scholar 

  95. Mishne, G., Cohen, I.: Multiscale anomaly detection using diffusion maps. IEEE J. Sel. Top. Signal Process. 7(1), 111–123 (2013)

    Article  Google Scholar 

  96. Mishne, G., Cohen, I.: Multiscale anomaly detection using diffusion maps and saliency score. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2823–2827. IEEE (2014)

  97. Mishne, G., Shaham, U., Cloninger, A., Cohen, I.: Diffusion nets. Appl. Comput. Harmon. Anal. (2017). https://doi.org/10.1016/j.acha.2017.08.007

  98. Moisan, L., Moulon, P., Monasse, P.: Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Process. Online 2, 56–73 (2012)

    Article  Google Scholar 

  99. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vis. 57(3), 201–218 (2004)

    Article  Google Scholar 

  100. Mousazadeh, S., Cohen, I.: Two dimensional noncausal ar-arch model: Stationary conditions, parameter estimation and its application to anomaly detection. Signal Process. 98, 322–336 (2014)

    Article  Google Scholar 

  101. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 433–440. IEEE (2011)

  102. Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by cnn-based self-similarity. Sensors 18(1), 209 (2018)

    Article  Google Scholar 

  103. Navarro, J.: Can the bounds in the multivariate chebyshev inequality be attained? Stat. Probab. Lett. 91, 1–5 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  104. Ngan, H.Y., Pang, G.K., Yung, N.H.: Automated fabric defect detection—a review. Image Vis. Comput. 29(7), 442–458 (2011)

    Article  Google Scholar 

  105. Ngan, H.Y., Pang, G.K., Yung, S., Ng, M.K.: Wavelet based methods on patterned fabric defect detection. Pattern Recognit. 38(4), 559–576 (2005)

    Article  Google Scholar 

  106. Olson, C.C., Judd, K.P., Nichols, J.M.: Manifold learning techniques for unsupervised anomaly detection. Expert Syst. Appl. 91, 374–385 (2018)

    Article  Google Scholar 

  107. Oudre, L.: Automatic detection and removal of impulsive noise in audio signals. Image Process. Online 5, 267–281 (2015)

    Article  MathSciNet  Google Scholar 

  108. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  109. Patraucean, V., Grompone von Gioi, R., Ovsjanikov, M.: Detection of mirror-symmetric image patches. In: 2013, IEEE Conference on Computer Vision on Pattern Recognition (2013)

  110. Patraucean, V., Gurdjos, P., von Gioi, R.G.: A parameterless ellipse and line segment detector with enhanced ellipse fitting. In: 2012, IEEE European Conference on Computer Vision (2012)

  111. Penn, B.: Using self-organizing maps for anomaly detection in hyperspectral imagery. In: 2002, IEEE Aerospace Conference Proceedings, vol. 3, pp. 3–3. IEEE (2002)

  112. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Article  Google Scholar 

  113. Perng, D.B., Chen, S.H., Chang, Y.S.: A novel internal thread defect auto-inspection system. Int. J. Adv. Manuf. Technol. 47(5–8), 731–743 (2010)

    Article  Google Scholar 

  114. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014)

    Article  Google Scholar 

  115. Ponomarenko, N.N., Lukin, V.V., Zriakhov, M., Kaarna, A., Astola, J.: An automatic approach to lossy compression of aviris images. In: 2007, IEEE International Geoscience and Remote Sensing Symposium, pp. 472–475. IEEE (2007)

  116. Ranney, K.I., Soumekh, M.: Hyperspectral anomaly detection within the signal subspace. IEEE Geosci. Remote Sens. Lett. 3(3), 312–316 (2006)

    Article  Google Scholar 

  117. Reed, I.S., Yu, X.: Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990)

    Article  Google Scholar 

  118. Riche, N., Mancas, M., Duvinage, M., Mibulumukini, M., Gosselin, B., Dutoit, T.: Rare 2012: a multi-scale rarity-based saliency detection with its comparative statistical analysis. Signal Process. Image Commun. 28(6), 642–658 (2013)

    Article  Google Scholar 

  119. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  120. Ruff, L., Görnitz, N., Deecke, L., Siddiqui, S.A., Vandermeulen, R., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4390–4399 (2018)

  121. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. International Conference on Information Processing in Medical Imaging, pp. 146–157. Springer (2017)

  122. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  123. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, pp. 582–588 (2000)

  124. Schweizer, S.M., Moura, J.M.: Hyperspectral imagery: clutter adaptation in anomaly detection. IEEE Trans. Inf. Theory 46(5), 1855–1871 (2000)

    Article  MATH  Google Scholar 

  125. Seo, H.J., Milanfar, P.: Static and space–time visual saliency detection by self-resemblance. J. Vis. 9(12), 15–15 (2009)

    Article  Google Scholar 

  126. Shankar, N., Zhong, Z.: Defect detection on semiconductor wafer surfaces. Microelectron. Eng. 77(3–4), 337–346 (2005)

    Article  Google Scholar 

  127. Singer, A., Shkolnisky, Y., Nadler, B.: Diffusion interpretation of nonlocal neighborhood filters for signal denoising. SIAM J. Imaging Sci. 2(1), 118–139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  128. Soukup, D., Huber-Mörk, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. In: International Symposium on Visual Computing, pp. 668–677. Springer (2014)

  129. Stein, D.W., Beaven, S.G., Hoff, L.E., Winter, E.M., Schaum, A.P., Stocker, A.D.: Anomaly detection from hyperspectral imagery. IEEE Signal Process. Mag. 19(1), 58–69 (2002)

    Article  Google Scholar 

  130. Tarassenko, L., Hayton, P., Cerneaz, N., Brady, M.: Novelty detection for the identification of masses in mammograms (1995)

  131. Tavakoli, H.R., Rahtu, E., Heikkilä, J.: Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: Scandinavian Conference on Image Analysis, pp. 666–675. Springer (2011)

  132. Tax, D.M., Duin, R.P.: Outlier detection using classifier instability. In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition, pp. 593–601. Springer (1998)

  133. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  134. Thonfeld, F., Feilhauer, H., Braun, M., Menz, G.: Robust change vector analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int. J. Appl. Earth Observ. Geoinf. 50, 131–140 (2016)

    Article  Google Scholar 

  135. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV (1998)

  136. Tout, K.: Automatic vision system for surface inspection and monitoring: application to wheel inspection. Ph.D. thesis, Troyes University of Technology (UTT) (2018)

  137. Tout, K., Cogranne, R., Retraint, F.: Fully automatic detection of anomalies on wheels surface using an adaptive accurate model and hypothesis testing theory. In: 2016 24th European Signal Processing Conference, pp. 508–512. IEEE (2016)

  138. Tout, K., Retraint, F., Cogranne, R.: Automatic vision system for wheel surface inspection and monitoring. In: ASNT Annual Conference 2017, pp. 207–216 (2017)

  139. Tsai, D.M., Hsieh, C.Y.: Automated surface inspection for directional textures. Image Vis. Comput. 18(1), 49–62 (1999)

    Article  Google Scholar 

  140. Tsai, D.M., Huang, T.Y.: Automated surface inspection for statistical textures. Image Vis. Comput. 21(4), 307–323 (2003)

    Article  Google Scholar 

  141. Tsai, D.M., Yang, C.H.: A quantile–quantile plot based pattern matching for defect detection. Pattern Recognit. Lett. 26(13), 1948–1962 (2005)

    Article  Google Scholar 

  142. Tsai, D.M., Yang, R.H.: An eigenvalue-based similarity measure and its application in defect detection. Image Vis. Comput. 23(12), 1094–1101 (2005)

    Article  Google Scholar 

  143. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)

    Article  Google Scholar 

  144. Washaya, P., Balz, T.: Sar coherence change detection of urban areas affected by disasters using sentinel-1 imagery. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 1857–1861 (2018)

  145. Xie, P., Guan, S.U.: A golden-template self-generating method for patterned wafer inspection. Mach. Vis. Appl. 12(3), 149–156 (2000)

    Article  Google Scholar 

  146. Xie, X.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7(3), 1–22 (2008)

    Article  Google Scholar 

  147. Xie, X., Mirmehdi, M.: Texems: texture exemplars for defect detection on random textured surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1454–1464 (2007)

    Article  Google Scholar 

  148. Yang, X.Z., Pang, G.K., Yung, N.H.C.: Discriminative fabric defect detection using adaptive wavelets. Opt. Eng. 41(12), 3116–3127 (2002)

    Article  Google Scholar 

  149. Yeh, C.H., Wu, F.C., Ji, W.L., Huang, C.Y.: A wavelet-based approach in detecting visual defects on semiconductor wafer dies. IEEE Trans. Semicond. Manuf. 23(2), 284–292 (2010)

    Article  Google Scholar 

  150. Zanetti, M., Bovolo, F., Bruzzone, L.: Rayleigh-rice mixture parameter estimation via em algorithm for change detection in multispectral images. IEEE Trans. Image Process. 24(12), 5004–5016 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  151. Zanetti, M., Bruzzone, L.: A theoretical framework for change detection based on a compound multiclass statistical model of the difference image. IEEE Trans. Geosci. Remote Sens. 56(2), 1129–1143 (2018)

    Article  Google Scholar 

  152. Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3313–3320. IEEE (2011)

  153. Zontak, M., Cohen, I.: Defect detection in patterned wafers using anisotropic kernels. Mach. Vis. Appl. 21(2), 129–141 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thibaud Ehret or Axel Davy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work supported by IDEX Paris-Saclay IDI 2016, ANR-11-IDEX-0003-02, ONR grant N00014-17-1-2552, CNES MISS project, Agencia Nacional de Investigación e Innovación (ANII, Uruguay) grant FCE_1_2017_135458, DGA Astrid ANR-17-ASTR-0013-01, DGA ANR-16-DEFA-0004-01, Programme ECOS Sud – UdelaR - Paris Descartes U17E04, and MENRT.

Appendix: Dual Formulation of Sparsity Models

Appendix: Dual Formulation of Sparsity Models

Sparsity-based variational methods lack the direct interpretation enjoyed by other methods as to the proper definition of an anomaly. By reviewing the first simplest method of this kind proposed in [9], we shall see that its dual interpretation points to the detection of the worst anomaly. Let D a dictionary representing “normal” image patches. For a given patch p, the normal patch corresponding to p is \(\hat{p}=D\hat{x}\) where

$$\begin{aligned} \hat{x} = \mathop {\mathrm{arg\,min}}\limits _x \left\{ \frac{1}{2}\Vert p-Dx\Vert _2^2 + \lambda \Vert x\Vert _1 \right\} . \end{aligned}$$

One can derive the following dual optimization problem: Let \(z = p-Dx\),

$$\begin{aligned} \min _x \left\{ \frac{1}{2}\Vert z\Vert _2^2 + \lambda \Vert x\Vert _1 \right\} \text { s.t } z=p-Dx. \end{aligned}$$

The Lagrangian is in this case

$$\begin{aligned} \mathcal {L}(x,z,\eta )&= \frac{1}{2}\Vert z\Vert _2^2 + \lambda \Vert x\Vert _1 + \eta ^T(p - Dx - z)\\&= \eta ^Tp + \left( \frac{1}{2}\Vert z\Vert _2^2 - \eta ^Tz\right) + (\lambda \Vert x\Vert _1 - \eta ^TDx). \end{aligned}$$

The dual problem is then

$$\begin{aligned} \mathcal {G}(\eta )&= \inf _{x,z} \mathcal {L}(x,z,\eta )\\&= \eta ^T p + \inf _{z}\left( \frac{1}{2}\Vert z\Vert _2^2 - \eta ^Tz\right) + \inf _{x}(\lambda \Vert x\Vert _1 - \eta ^TDx). \end{aligned}$$

Consider first \(\inf _{z}\left( \frac{1}{2}\Vert z\Vert _2^2 - \eta ^Tz\right) \): This part is differentiable in z so that

$$\begin{aligned} \partial _z \left( \frac{1}{2}\Vert z\Vert _2^2 - \eta ^Tz\right) = z - \eta ; \end{aligned}$$

therefore, the inf is achieved for \(z=\eta \). The inf is in this case

$$\begin{aligned} \inf _{z}\left( \frac{1}{2}\Vert z\Vert _2^2 - \eta ^Tz\right) = -\frac{1}{2}\Vert \eta \Vert _2^2 \end{aligned}$$

As for \(\inf _{x}(\lambda \Vert x\Vert _1 - \eta ^TDx)\): This part is not differentiable (because not smooth); nevertheless, the subgradient exists. Let v such that \(\Vert x\Vert _1 = v^Tx\) (for all i \(v_i \in {-1, 1}\)). The subgradient of \(\Vert .\Vert _1\) gives v.

$$\begin{aligned} \partial _x \left( \lambda \Vert x\Vert _1 - \eta ^TDx\right)&= \partial _x \left( \lambda v^Tx - \eta ^TDx\right) \\&= \lambda v - D^T\eta \end{aligned}$$

A necessary condition to attain the infimum is then \(0 \in \{\lambda v - D^T\eta \}\). This leads to \(v = \frac{D^T\eta }{\lambda }\) with the condition that \(\Vert D^T\eta \Vert _\infty \le \lambda \) (because \(\Vert v\Vert _\infty \le 1\)) which can be injected into the previous equation which gives

$$\begin{aligned} \inf _{x}(\lambda \Vert x\Vert _1 - \eta ^TDx)&= \inf _{x}(\lambda v^Tx - \eta ^TDx)\\&= \lambda \left( \frac{D^T\eta }{\lambda }\right) ^T x - \eta ^T Dx\\&= \eta ^T Dx - \eta ^T Dx\\&= 0 \end{aligned}$$

Finally,

$$\begin{aligned} \mathcal {G}(\eta ) = \eta ^Tp - \frac{1}{2}\Vert \eta \Vert _2^2. \end{aligned}$$

Therefore, the dual problem is

$$\begin{aligned} \sup _\eta \left\{ \eta ^Tp - \frac{1}{2}\Vert \eta \Vert _2^2\right\} \text { s.t. } \Vert D^t\eta \Vert _\infty \le \lambda \end{aligned}$$

which is equivalent to

$$\begin{aligned} \sup _\eta \left\{ -\frac{1}{2}\Vert p - \eta \Vert _2^2\right\} \text { s.t. } \Vert D^t\eta \Vert _\infty \le \lambda . \end{aligned}$$

It can be reformulated in a penalized version as

$$\begin{aligned} \hat{\eta } = \mathop {\mathrm{arg\,min}}\limits _\eta \left\{ \frac{1}{2}\Vert p - \eta \Vert _2^2 + \lambda ' \Vert D^T\eta \Vert _\infty \right\} . \end{aligned}$$
(15)

While \(D\hat{x}\) represents the “normal” part of the patch p, \(\hat{\eta }\) represents the anomaly. Indeed, the condition \(\Vert D^T\eta \Vert _\infty \le \lambda \) imposes to \(\eta \) to be far from the patches represented by D. Moreover, for a solution \(\eta ^*\) of the dual to exist (and so that the duality gap does not exist) it requires that \(\eta ^* = p - Dx^*\), i.e., \(p = Dx^* + \eta ^*\) which confirms the previous observation. Notice that the solution of (15) exists by an obvious compactness argument and is unique by the strict convexity of the dual functional.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehret, T., Davy, A., Morel, JM. et al. Image Anomalies: A Review and Synthesis of Detection Methods. J Math Imaging Vis 61, 710–743 (2019). https://doi.org/10.1007/s10851-019-00885-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00885-0

Keywords