Abstract
Many mathematical imaging problems are posed as non-convex optimization problems. When numerically tractable global optimization procedures are not available, one is often interested in testing ex post facto whether or not a locally convergent algorithm has found the globally optimal solution. When the problem is formulated in terms of maximizing the likelihood function under a statistical model for the measurements, one can construct a statistical test that a local maximum is in fact the global maximum. A one-sided test is proposed for the case that the statistical model is a member of the generalized location family of probability distributions, a condition often satisfied in imaging and other inverse problems. We propose a general method for improving the accuracy of the test by reparameterizing the likelihood function to embed its domain into a higher-dimensional parameter space. We show that the proposed global maximum testing method results in improved accuracy and reduced computation for a physically motivated joint-inverse problem arising in camera-blur estimation.
Similar content being viewed by others
References
Alberge, F., Nikolova, M., Duhamel, P.: Blind identification/equalization using deterministic maximum likelihood and a partial prior on the input. IEEE Trans. Signal Process. 54(2), 724–737 (2006)
Andrieu, C., Doucet, A.: Simulated annealing for maximum a posteriori parameter estimation of hidden Markov models. IEEE Trans. Inform. Theory 46(3), 994–1004 (2000)
Andrieu, C., Doucet, A., Fitzgerald, W.J.: An introduction to Monte Carlo methods for Bayesian data analysis. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics, pp. 169–217. Springer, Berlin (2001)
Barakat, R., Sandler, B.H.: Determination of the wave-front aberration function from measured values of the point-spread function: a two-dimensional phase retrieval problem. JOSA A 9(10), 1715–1723 (1992)
Biernacki, C.: Testing for a global maximum of the likelihood. J. Comput. Graph. Stat. 14(3), 657–674 (2005)
Blatt, D., Hero, A.O.: On tests for global maximum of the log-likelihood function. IEEE Trans. Inform. Theory 53(7), 2510–2525 (2007)
Cox, D., Hinkley, D.: Theoretical Statistics. Chapman and Hall, London (1974)
Cox, D.R.: Tests of separate families of hypotheses. Proc. Fourth Berkeley Symp. Math. Stat. Probab. 1, 105–123 (1961)
Cox, D.R.: Further results on tests of separate families of hypotheses. J. Royal Stat. Soc. Series B (Methodol.) 24(2), 406–424 (1962)
Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)
Durand, S., Nikolova, M.: Stability of the minimizers of least squares with a non-convex regularization. part i: local behavior. Appl. Math. Optim. 53(2), 185–208 (2006)
Durand, S., Nikolova, M.: Stability of the minimizers of least squares with a non-convex regularization. part ii: global behavior. Appl. Math. Optim. 53(3), 259–277 (2006)
Fisher, R.A.: Theory of statistical estimation. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 22, pp. 700–725. Cambridge University Press, Cambridge (1925)
Gan, L., Jiang, J.: A test for global maximum. J. Am. Stat. Assoc. 94(447), 847–854 (1999)
Gerwe, D.R., Johnson, M.M., Calef, B.: Local minima analysis of phase diverse phase retrieval using maximum likelihood. In: The Advanced Maui Optical and Space Surveillance Technical Conference (2008)
Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1996)
Isernia, T., Leone, G., Pierri, R.: Phase retrieval of radiated fields. Inverse Problems 11(1), 183 (1995)
Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions, Volume 1: Models and Applications, vol. 1. John Wiley & Sons, New Jersey (2004)
Kullback, S.: Information Theory and Statistics. Courier Corporation (1997)
Le Cam, L.: Asymptotic Methods in Statistical Decision Theory. Springer Science & Business Media, Berlin (2012)
LeBlanc, J.W., Thelen, B.J., Hero, A.O.: Joint camera blur and pose estimation from aliased data. J. Opt. Soc. Am. A 35(4), 639–651 (2018)
Lehmann, E., Casella, G.: Theory of Point Estimation. Springer, Berlin (1998)
Liu, C., Rubin, D.B., Wu, Y.N.: Parameter expansion to accelerate em: the px-em algorithm. Biometrika 85(4), 755–770 (1998)
Martial, G.: Strehl ratio and aberration balancing. J. Opt. Soc. Am. A, Opt. Image Sci. (USA) 8(1), 164–70 (1991)
Moretta, R., Pierri, R.: The “traps” issue in a non linear inverse problem: the phase retrieval in circular case. In: 2019 PhotonIcs and Electromagnetics Research Symposium-Spring (PIERS-Spring), pp. 552–559. IEEE (2019)
Nikolova, M.: Estimées localement fortement homogenes. Comptes Rendus de l’Acad. des Sci.-Series I-Math. 325(6), 665–670 (1997)
Nikolova, M.: Markovian reconstruction using a GNC approach. IEEE Trans. Image Process. 8(9), 1204–1220 (1999)
Nikolova, M.: Model distortions in Bayesian map reconstruction. Inverse Problems Imaging 1(2), 399 (2007)
Nikolova, M., Hero, A.: Segmentation of a road from a vehicle-mounted radar and accuracy of the estimation. In: Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No. 00TH8511), pp. 284–289. IEEE (2000)
Nikolova, M., Idier, J., Mohammad-Djafari, A.: Inversion of large-support ill-posed linear operators using a piecewise Gaussian MRF. IEEE Trans. Image Process. 7(4), 571–585 (1998)
Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (1999)
Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66(3), 207–211 (1976)
Osher, S., Fedkiw, R., Piechor, K.: Level set methods and dynamic implicit surfaces. Appl. Mech. Rev. 57(3), B15–B15 (2004)
Rao, R.C.: Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 44, pp. 50–57. Cambridge University Press, Cambridge (1948)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)
Sharman, K., McClurkin, G.: Genetic algorithms for maximum likelihood parameter estimation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2716–2719. New York (1989)
Silvey, S.D.: The Lagrangian multiplier test. Ann. Math. Stat. 30(2), 389–407 (1959)
Stigler, S.M., et al.: The epic story of maximum likelihood. Stat. Sci. 22(4), 598–620 (2007)
Vapnik, V.: The support vector method of function estimation. In: Suykens, J.A.K., Vandewalle, J. (eds.) Nonlinear Modeling, pp. 55–85. Springer, Berlin (1998)
Wald, A.: Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54(3), 426–482 (1943)
Wald, A.: Note on the consistency of the maximum likelihood estimate. Ann. Math. Stat. 20(4), 595–601 (1949)
Wang, S.Q., He, J.H.: Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos, Solitons Fractals 35(4), 688–691 (2008)
White, H.: Maximum likelihood estimation of misspecified models. Econom. J. Econom. Soc. 50, 1–25 (1982)
Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9(1), 60–62 (1938)
Zernike, vF: Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1(7), 689–704 (1934)
Acknowledgements
This work was partially supported by ARO grant W911NF-15-1-0479 and a DOE NNSA grant to the University of Michigan Consortium on Verification Technology.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
LeBlanc, J.W., Thelen, B.J. & Hero, A.O. Testing that a Local Optimum of the Likelihood is Globally Optimum Using Reparameterized Embeddings. J Math Imaging Vis 62, 858–871 (2020). https://doi.org/10.1007/s10851-020-00979-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-020-00979-0