Abstract
The linear ordering problem is an NP-hard problem that arises in a variety of applications. Due to its interest in practice, it has received considerable attention and a variety of algorithmic approaches to its solution have been proposed. In this paper we give a detailed search space analysis of available benchmark instance classes that have been used in various researches. The large fitness-distance correlations observed for many of these instances suggest that adaptive restart algorithms like iterated local search or memetic algorithms, which iteratively generate new starting solutions for a local search based on previous search experience, are promising candidates for obtaining high performing algorithms. We therefore experimentally compared two such algorithms and the final experimental results suggest that, in particular, the memetic algorithm is a new state-of-the-art approach to the linear ordering problem.
Similar content being viewed by others
References
E. Angel V. Zissimopoulos (1998) ArticleTitleAutocorrelation coefficient for the graph bipartitioning problem Theoret. Comput. Sci. 191 IssueID(1-2) 229–243
E. Angel V. Zissimopoulos (2000) ArticleTitleOn the classification of NP-complete problems in terms of their correlation coefficient Discrete Appl. Math. 99 IssueID(1-3) 261–277
Becker, O.: Das Helmstädtersche Reihenfolgeproblem - die Effizienz verschiedener Näherungsverfahren, in Computer Uses in the Social Science, Wien, January 1967.
M. Birattari T. Stützle L. Paquete K. Varrentrapp (2002) A racing algorithm for configuring metaheuristics W. B. Langdon (Eds) et al. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002) Morgan Kaufmann Publishers San Francisco, CA 11–18
K. D. Boese (1996) Models for iterative global optimization University of California, Computer Science Department Los Angeles, CA
V. Campos F. Glover M. Laguna R. Martí (2001) ArticleTitleAn experimental evaluation of a scatter search for the linear ordering problem J. Global Optim. 21 IssueID(4) 397–414
V. Campos M. Laguna R. Martí (1999) Scatter search for the linear ordering problem D. Corne M. Dorigo F. Glover (Eds) New Ideas in Optimization McGraw-Hill London, UK 331–339
S. Chanas P. Kobylanski (1996) ArticleTitleA new heuristic algorithm solving the linear ordering problem Comput. Optim. Appl. 6 191–205
R. K. Congram (2000) Polynomially searchable exponential neighbourhoods for sequencing problems in combinatorial optimisation University of Southampton, Faculty of Mathematical Studies UK
M. Grötschel M. Jünger G. Reinelt (1984) ArticleTitleA cutting plane algorithm for the linear ordering problem Oper. Res. 32 IssueID(6) 1195–1220
M. Grötschel M. Jünger G. Reinelt (1984) ArticleTitleOptimal triangulation of large real world input-output matrices Statistische Hefte 25 261–295
H. H. Hoos T. Stützle (1998) Evaluating Las Vegas algorithms — pitfalls and remedies G. F. Cooper S. Moral (Eds) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence Morgan Kaufmann Publishers San Francisco, CA 238–245
G. Huang A. Lim (2003) Designing a hybrid genetic algorithm for the linear ordering problem E. Cantú-Paz (Eds) et al. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003) Springer-Verlag Berlin 1053–1064
T. Jones S. Forrest (1995) Fitness distance correlation as a measure of problem difficulty for genetic algorithms L. J. Eshelman (Eds) Proceedings of the Sixth International Conference on Genetic Algorithms Morgan Kaufmann Publishers San Mateo, CA 184–192
R. Kaas (1981) ArticleTitleA branch and bound algorithm for the acyclic subgraph problem European J. Oper. Res. 8 355–362
S. Kirkpatrick C. D. Gelatt SuffixJr. M. P. Vecchi (1983) ArticleTitleOptimization by simulated annealing Science 220 671–680 Occurrence Handle85f:90091
D. E. Knuth (1993) The Stanford GraphBase: A Platform for Combinatorial Computing Addison-Wesley New York
M. Laguna R. Martí V. Campos (1999) ArticleTitleIntensification and diversification with elite tabu search solutions for the linear ordering problem Comput. Oper. Res. 26 IssueID(12) 1217–1230
H. R. Lourenço O. Martin T. Stützle (2002) Iterated local search F. Glover G. Kochenberger (Eds) Handbook of Metaheuristics SeriesTitleInternational Series in Operations Research & Management Science NumberInSeries57 Kluwer Academic Publishers Norwell, MA 321–353
P. Merz (2000) Memetic algorithms for combinatorial optimization problems: Fitness landscapes and effective search strategies Department of Electrical Engineering and Computer Science, University of Siegen Germany
P. Merz B. Freisleben (1999) Fitness landscapes and memetic algorithm design D. Corne M. Dorigo F. Glover (Eds) New Ideas in Optimization McGraw-Hill London, UK 245–260
P. Merz B. Freisleben (2000) ArticleTitleFitness landscape analysis and memetic algorithms for the quadratic assignment problem IEEE Trans. Evolut. Comput. 4 IssueID(4) 337–352
J. E. Mitchell B. Borchers (2000) Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm H. L. Frenk K. Roos T. Terlaky S. Zhang (Eds) High Performance Optimization Kluwer Academic Publishers Dordrecht, The Netherlands 349–366
P. Moscato C. Cotta (2002) A gentle introduction to memetic algorithms F. Glover G. Kochenberger (Eds) Handbook of Metaheuristics SeriesTitleInternational Series in Operations Research & Management Science NumberInSeries57 Kluwer Academic Publishers Norwell, MA 105–144
T. Schiavinotto T. Stützle (2003) Search space analysis of the linear ordering problem G. R. Raidl (Eds) et al. Applications of Evolutionary Computing SeriesTitleLecture Notes in Comput. Sci. NumberInSeries2611 Springer-Verlag Berlin 322–333
P. F. Stadler (1995) Towards a theory of landscapes R. Lopéz-Peña R. Capovilla R. García-Pelayo H. Waelbroeck F. Zertuche (Eds) Complex Systems and Binary Networks SeriesTitleLecture Notes in Phys. NumberInSeries461 Springer-Verlag Berlin 77–163
P. F. Stadler (1996) ArticleTitleLandscapes and their correlation functions J. Math. Chemistry 20 IssueID(1) 1–45
P. F. Stadler W. Schnabl (1992) ArticleTitleThe landscape of the travelling salesman problem Phys. Lett. A 161 337–344
Standard Performance Evaluation Corporation: SPEC CPU95 and CPU2000 Benchmarks, http://www.spec.org/, November 2002.
T. Stützle H. H. Hoos (2000) ArticleTitle MAX-MIN ant system Future Generation Computer Systems 16 IssueID(8) 889–914
T. Stützle H. H. Hoos (2001) Analysing the run-time behaviour of iterated local search for the travelling salesman problem P. Hansen C. C. Ribeiro (Eds) Essays and Surveys on Metaheuristics Kluwer Academic Publishers Boston, MA 589–611
G. Syswerda (1990) Schedule optimization using genetic algorithms L. Davis (Eds) Handbook of Genetic Algorithms Van Nostrand Reinhold New York
E. D. Weinberger (1990) ArticleTitleCorrelated and uncorrelated fitness landscapes and how to tell the difference Biological Cybernetics 63 IssueID(5) 325–336
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schiavinotto, T., Stützle, T. The linear ordering problem: Instances, search space analysis and algorithms. J Math Model Algor 3, 367–402 (2005). https://doi.org/10.1007/s10852-005-2583-1
Issue Date:
DOI: https://doi.org/10.1007/s10852-005-2583-1
Key words
- linear ordering problem
- search space analysis
- benchmark instances
- iterated local search
- memetic algorithms