Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Weight-based Heuristics for Constraint Satisfaction and Combinatorial Optimization Problems

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In this paper, we propose mechanisms to improve instantiation heuristics by incorporating weighted factors on variables. The proposed weight-based heuristics are evaluated on several tree search methods such as chronological backtracking and discrepancy-based search for both constraint satisfaction and optimization problems. Experiments are carried out on random constraint satisfaction problems, car sequencing problems, and jobshop scheduling with time-lags, considering various parameter settings and variants of the methods.The results show that weighting mechanisms reduce the tree size and then speed up the solving time, especially for the discrepancy-based search method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

References

  1. Artigues, C., Huguet, M.-J., Lopez, P.: Generalized disjunctive constraint propagation for solving the job shop problem with time lags. Eng. Appl. Artif. Intell. 24(2), 220–231 (2011)

    Article  Google Scholar 

  2. Beck, J.C., Prosser, P., Wallace, R.: Variable ordering heuristics show promise. In: Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming (CP’04), pp. 711–715. Toronto, Canada (2004)

  3. Bessière, C., Régin, J.-C.: MAC and combined heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In: Proceedings of the 2nd International Conference on Principles and Practice of Constraint Programming (CP’96), pp. 61–75. Cambridge, Massachusetts, USA (1996)

  4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI’04), pp. 146–150. Valencia, Spain, August (2004)

  5. Brucker, P., Hilbig, T., Hurink, J.: A branch and bound algorithm for a single machine scheduling with positive and negative time-lags. Discrete Appl. Math. 94, 77–99 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caumond, A., Lacomme, P., Tchernev, N.: A memetic algorithm for the job-shop with time-lags. Comput. Oper. Res. 35, 2331–2356 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. CSPLib: http//csplib.org

  8. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  9. Frost, D.H., Bessière, C., Dechter, R., Régin, J.C.: Random uniform CSP generators. http://www.lirmm.fr/~bessiere/generator.html (1996)

  10. Gacias, B., Artigues, C., Lopez, P.: Parallel machine scheduling with precedence constraints and setup times. Comput. Oper. Res. 37(12), 2141–2151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gent, I.P.: Two results on car-sequencing problems. Research report 02-1998, APES, University of Strathclyde, UK (1998)

  12. Grimes, D., Wallace, R.J.: Learning from failure in constraint satisfaction search. In: AAAI Workshop on Learning for Search, Boston, Massachusetts, USA (2006)

  13. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)

    Article  Google Scholar 

  14. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), vol. 1, pp. 607–615. Montréal, Québec, Canada (1995)

  15. Van Hentenryck, P., Simonis, H., Dincbas, M.: Constraint satisfaction using constraint logic programming. Artif. Intell. 58, 113–159 (1992)

    Article  MATH  Google Scholar 

  16. Ben Hmida, A., Haouari, M., Huguet, M.-J., Lopez, P.: Discrepancy search for the flexible job shop problem. Comput. Oper. Res. 37(12), 2192–2201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Van Hoeve, W.J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New filtering algorithms for combinations of among constraints. Constraints 14(2), 273–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hooker, J.: Logic-based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  19. Hurink, J., Keuchel, J.: Local search algorithms for a single-machine scheduling problem with positive and negative time-lags. Discrete Appl. Math. 112, 179–197 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karoui, W., Huguet, M.-J., Lopez, P., Naanaa, W.: YIELDS: a yet improved limited discrepancy search for CSPs. In: Proceedings of the 4th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’07), LNCS 4510, Springer, pp. 99–111. Brussels, Belgium (2007)

  21. Korf, R.E.: Improved limited discrepancy search. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI’96) and the 8th Innovative Applications of Artificial Intelligence Conference (IAAI’96), pp. 286–291. Portland, Oregon, USA (1996)

  22. Lacomme, P.: http://www.isima.fr/~lacomme/Job_Shop_TL.html

  23. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Last conflict based reasoning. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI’06), pp. 133–137. Trento, Italy (2006)

  24. Lecoutre, C., Sais, L., Vion, J.: Using SAT encodings to derive CSP value ordering heuristics. JSAT 1, 69–186 (2007)

    Google Scholar 

  25. Milano, M., Roli, A.: On the relation between complete and incomplete search: an informal discussion. In: Proceedings of the 4th International Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’02), pp. 237–250. Le Croisic, France (2002)

  26. Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources. Springer (2002)

  27. Prcovic, N., Neveu, B.: Ensuring a relevant visiting order of the leaf nodes during a tree search. In: Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming (CP’99), LNCS 1713, Springer, pp. 361–374. Alexandria, Virginia, USA (1999)

  28. Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints. In: Proceedings of the 3rd International Conference on Principles and Practice of Constraint Programming (CP’97), pp. 32–46 (1997)

  29. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of the 2nd Workshop on Principles and Practices of Constraint Programming (PPCP’94), LNCS 874, Springer, pp. 10–20. Rosario, Orcas Island, Washington, USA (1994)

  30. Smith, B.: Succeed-first or fail-first: a case study in variable and value ordering heuristics. In: Proceedings of the 3rd Conference on the Practical Applications of Constraint Technology (PACT’97), pp. 321–330. London, UK (1997)

  31. Solnon, C., Cung, V.D., Nguyen, A., Artigues, C.: The car sequencing problem: overview of state-of-the-art methods and industrial case-study of the ROADEF’05 challenge problem. Eur. J. Oper. Res. 191(3), 912–927 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press Ltd, London (1993)

    Google Scholar 

  33. Walsh, T.: Depth-bounded discrepancy search. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97), vol. 2, pp. 1388–1395. Nagoya, Japan (1997)

  34. Wikum, E.D., Llewellyn, D.C., Nemhauser, G.L.: One-machine generalized precedence constrained scheduling problems. Oper. Res. Lett. 16(2), 87–99 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artif. Intell. 171, 514–534 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Y., Yap, R.H.C.: Making AC-3 an optimal algorithm. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI’01), pp. 316–321. Seattle, Washington, USA (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huguet, MJ., Lopez, P. & Karoui, W. Weight-based Heuristics for Constraint Satisfaction and Combinatorial Optimization Problems. J Math Model Algor 11, 193–215 (2012). https://doi.org/10.1007/s10852-012-9174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-012-9174-8

Keywords