Abstract
In this paper, our objective is twofold: first, to assess the potential of the new compact polarimetry imaging radar system called hybrid-polarimetry (CL-pol): circular transmitted polarization and coherent dual linear receive polarizations for full characterization and exploitation of the backscattered field. Useful characteristics that are unique to the hybrid-polarity architecture are invariance to geometrical orientations and minimizing on-board resource requirements. Second, to develop a classification polarimetric method based on the support vector machine (SVM) which uses full- and the compact-pol modes. We present a study of the polarimetric information content derived from the decomposition for the CL-mode using Stokes parameter data products and from Freeman-Durden-decomposition derived from the full-pol imaging mode. We compare SVM classification both among the partial polarimetric datasets and against the full quad-pol dataset. We illustrate our results by using the polarimetric SAR images of Algiers city in Algeria acquired by the RadarSAT2 (FQ19) in C-band.
Similar content being viewed by others
References
Nord, M., Ainsworth, T.L., Lee, J.S., Stacy, N.: Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans. Geosci. Remote Sens. 47, 147–188 (2009)
Souyris, J.-C., Imbo, P., Fjrtoft, R., Mingot, S., Lee, J.-S.: Compact polarimetry based on symmetry properties of geophysical media: The /4 mode. IEEE Trans. Geosci. Remote Sens. 43, 634–646 (2005)
Raney, K.: Hybrid polarimetric, SAR architecture. IEEE Trans. Geosci.Remote Sens. 45, 3397–3404 (2007)
Cloudes, R., Pottier, E.: A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 34, 498–518 (1996)
Ulaby, F.T., Elachi, C.: Radar polarimetry for geoscience applications, Artech House, Norwood (1990)
Zebker, H., Van zyl, J.J.: Imaging radar polarimetry: A review. Proc. IEEE 79, 1583–1606 (1991)
Dubois-Fernandez, P., Souyris, J.-C., Angelliaume, S., Garestier, F.: The compact polarimetry alternative for spaceborne SAR at low frequency. IEEE Trans. Geosci. Remote Sens 46, 3208–3222 (2008)
Nghiem, S.V., Yueh, S.H., Kwok, R., Li, F.K.: Symmetry properties in polarimetric remote sensing. Radio Sci. 27, 693–711 (1992)
Freeman, A., Durden, S.L.: A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 36, 963–973 (1998)
Touzi, R., Boerner, W.-M., Lee, J.-S., Lueneburg, E.: A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction. Can J. Remote Sens. 30, 369–379 (2004)
Charbonneau, F., Brisco, B., Raney, K., Mcnairn, H., Chen, L., Vachon, P., Shang, J., Champagne, C., Merzouki, A., Geldsetzer, T., Trudel, M.: Compact polarimetry overview and applications assessment. Can J. Remote Sens. 36, 298–315 (2010)
Vapnik, V.N.: Statistical learning theory. In: SV Machines for Pattern Recognition, pp. 496–498. Wiley, USA (1998)
Fukuda, S., Hirosawa, H.: Support vector machine classification of land cover: application to polarimetric SAR data. In: Proceeding IGARSS, vol. 1, pp. 187–189 (2001)
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1778–1790 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Souissi, B., Ouarzeddine, M. & Belhadj-Aissa, A. Optimal SVM Classification for Compact Polarimetric Data Using Stokes Parameters. J Math Model Algor 13, 433–446 (2014). https://doi.org/10.1007/s10852-013-9244-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10852-013-9244-6