Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Optimal SVM Classification for Compact Polarimetric Data Using Stokes Parameters

  • Published:
Journal of Mathematical Modelling and Algorithms in Operations Research

Abstract

In this paper, our objective is twofold: first, to assess the potential of the new compact polarimetry imaging radar system called hybrid-polarimetry (CL-pol): circular transmitted polarization and coherent dual linear receive polarizations for full characterization and exploitation of the backscattered field. Useful characteristics that are unique to the hybrid-polarity architecture are invariance to geometrical orientations and minimizing on-board resource requirements. Second, to develop a classification polarimetric method based on the support vector machine (SVM) which uses full- and the compact-pol modes. We present a study of the polarimetric information content derived from the decomposition for the CL-mode using Stokes parameter data products and from Freeman-Durden-decomposition derived from the full-pol imaging mode. We compare SVM classification both among the partial polarimetric datasets and against the full quad-pol dataset. We illustrate our results by using the polarimetric SAR images of Algiers city in Algeria acquired by the RadarSAT2 (FQ19) in C-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nord, M., Ainsworth, T.L., Lee, J.S., Stacy, N.: Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans. Geosci. Remote Sens. 47, 147–188 (2009)

    Article  Google Scholar 

  2. Souyris, J.-C., Imbo, P., Fjrtoft, R., Mingot, S., Lee, J.-S.: Compact polarimetry based on symmetry properties of geophysical media: The /4 mode. IEEE Trans. Geosci. Remote Sens. 43, 634–646 (2005)

    Article  Google Scholar 

  3. Raney, K.: Hybrid polarimetric, SAR architecture. IEEE Trans. Geosci.Remote Sens. 45, 3397–3404 (2007)

    Article  Google Scholar 

  4. Cloudes, R., Pottier, E.: A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 34, 498–518 (1996)

    Article  Google Scholar 

  5. Ulaby, F.T., Elachi, C.: Radar polarimetry for geoscience applications, Artech House, Norwood (1990)

  6. Zebker, H., Van zyl, J.J.: Imaging radar polarimetry: A review. Proc. IEEE 79, 1583–1606 (1991)

    Article  Google Scholar 

  7. Dubois-Fernandez, P., Souyris, J.-C., Angelliaume, S., Garestier, F.: The compact polarimetry alternative for spaceborne SAR at low frequency. IEEE Trans. Geosci. Remote Sens 46, 3208–3222 (2008)

    Article  Google Scholar 

  8. Nghiem, S.V., Yueh, S.H., Kwok, R., Li, F.K.: Symmetry properties in polarimetric remote sensing. Radio Sci. 27, 693–711 (1992)

    Article  Google Scholar 

  9. Freeman, A., Durden, S.L.: A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 36, 963–973 (1998)

    Article  Google Scholar 

  10. Touzi, R., Boerner, W.-M., Lee, J.-S., Lueneburg, E.: A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction. Can J. Remote Sens. 30, 369–379 (2004)

    Article  Google Scholar 

  11. Charbonneau, F., Brisco, B., Raney, K., Mcnairn, H., Chen, L., Vachon, P., Shang, J., Champagne, C., Merzouki, A., Geldsetzer, T., Trudel, M.: Compact polarimetry overview and applications assessment. Can J. Remote Sens. 36, 298–315 (2010)

    Article  Google Scholar 

  12. Vapnik, V.N.: Statistical learning theory. In: SV Machines for Pattern Recognition, pp. 496–498. Wiley, USA (1998)

  13. Fukuda, S., Hirosawa, H.: Support vector machine classification of land cover: application to polarimetric SAR data. In: Proceeding IGARSS, vol. 1, pp. 187–189 (2001)

  14. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1778–1790 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boularbah Souissi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souissi, B., Ouarzeddine, M. & Belhadj-Aissa, A. Optimal SVM Classification for Compact Polarimetric Data Using Stokes Parameters. J Math Model Algor 13, 433–446 (2014). https://doi.org/10.1007/s10852-013-9244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-013-9244-6

Keywords