Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mechanical properties of Cu–Cr system alloys with and without Zr and Ag

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of addition of Zr and Ag on the mechanical properties of a Cu–0.5 wt%Cr alloy have been investigated. The addition of 0.15 wt%Zr enhances the strength and resistance to stress relaxation of the Cu–Cr alloy. The increase in strength is caused by both the decrease in inter-precipitate spacing of Cr precipitates and the precipitation of Cu5Zr phase. The stress relaxation resistance is improved by the preferentially forming Cu5Zr precipitates on dislocations, in addition to Cr precipitates on dislocations. The addition of 0.1 wt%Ag to the Cu–Cr and Cu–Cr–Zr alloys improves the strength, stress relaxation resistance and bend formability of these alloys. The increase in strength and stress relaxation resistance is ascribed to the decrease in inter-precipitate spacing of Cr precipitates and the suppression of recovery during aging, and to the Ag-atom-drag effect on dislocation motion. The better bend formability of the Ag-added alloys is explained in terms of the larger post-uniform elongation of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tang NY, Taplin DMR, Dunlop GL (1985) Mater Sci Technol 1:270

    CAS  Google Scholar 

  2. Correia JB, Davies HA, Sellars CM (1997) Acta Mater 45:177

    Article  CAS  Google Scholar 

  3. Batra IS, Dey GK, Kulkarni UD, Banerjee S (2001) J Nucl Mater 299:91

    Article  CAS  Google Scholar 

  4. Batra IS, Dey GK, Kulkarni UD, Banerjee S (2003) Mater Sci Eng A356:32

    CAS  Google Scholar 

  5. Ishida M, Iwamura T, Suzuki T, Deliand F, (2003) J JRICu 42:153

    CAS  Google Scholar 

  6. Seeger J, Kuhn A, Bogel A, Buresch I (2002) Metallurgy 56:289

    CAS  Google Scholar 

  7. Standard test method for bend test for determining the formability of copper and copper alloy strip in “ASTM Test Method” (ASTM international, West Conshohocken, 2004) p 758

  8. Standard test methods for stress relaxation for materials and structures in “ASTM Test Method” (ASTM international, West Conshohocken, 2004) p 397

  9. Fujii T, Nakazawa H, Kato M, Dahmen U (2000) Acta Mater 48:1033

    Article  CAS  Google Scholar 

  10. Forey P, Glimois JL, Foren JL, Devely G (1980) C R Acad Sc Paris 291:177

    CAS  Google Scholar 

  11. Kneller E, Khan Y, Gorres U (1986) Z Metallkd 77:43

    CAS  Google Scholar 

  12. Komatsu S (2002) J JCBRA 41:1

    CAS  Google Scholar 

  13. Long NJ, Loretto MH, Lloyd CH (1980) Acta Metall 28:709

    Article  CAS  Google Scholar 

  14. Holzwarth U, Stamm H (2000) J Nucl Mater 279:31

    Article  CAS  Google Scholar 

  15. Martin JW (1980) Micromechanism in particle-hardened alloys. Cambridge University Press, Cambridge, p 44

  16. Tanaka K, Mori T (1970) Acta Metall 18:931

    Article  CAS  Google Scholar 

  17. Brown LM, Clarke DR (1975) Acta Metall 23:821

    Article  CAS  Google Scholar 

  18. Gallagher PCJ (1970) Metall Trans 1:2429

    CAS  Google Scholar 

  19. Miyake J (1997) J JCBRA 38:1

    Google Scholar 

  20. Usami T, Hirai T, Kurihara M, Oyama Y, Eguchi T (2001) J JCBRA 40:294

    CAS  Google Scholar 

  21. Hatakeyama K, Sugawara A, Tojyo T, Ikeda K (2002) Mater Trans 43:2908

    Article  CAS  Google Scholar 

  22. Sato E, Yamada T, Tanaka H, Jinbo I (2005) J Jpn Inst Light Metals 55:604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for Promotion of Science (JSPS) under grant no. 17560614. We also thank Mr. K. Higashimine of the Center for Nano Materials and Technology, Japan Advanced Institution Science and Technology, for the TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, C., Monzen, R. & Tazaki, K. Mechanical properties of Cu–Cr system alloys with and without Zr and Ag. J Mater Sci 43, 813–819 (2008). https://doi.org/10.1007/s10853-007-2159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2159-8

Keywords