Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

One-pot synthesis of vancomycin-encapsulated ZIF-8 nanoparticles as multivalent and photocatalytic antibacterial agents for selective-killing of pathogenic gram-positive bacteria

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, antibiotic-conjugated nanoparticles have attracted great interest for use as antimicrobial agents. Unfortunately, most of antibiotic-conjugated nanocomposites are involved in a multi-step and time-consuming process. Herein, we developed a vancomycin-encapsulated ZIF-8 (VAN@ZIF-8) nanoparticles by a simple one-pot approach to combat bacteria. The prepared VAN@ZIF-8 nanoparticles have the capacity to recognize gram-positive bacteria because of the strong and specific five-hydrogen bond between the VAN and the D-alanyl-D-alanine dipeptide coming from gram-positive bacteria cell wall. Importantly, owing to the multivalent nanoparticle-bacterium interactions, the VAN-encapsulated ZIF-8 nanoparticles exhibit a higher antibacterial efficacy in gram-positive bacteria compared to the free VAN molecules. In addition, the VAN@ZIF-8 nanoparticles as photocatalysts also show a strong photoinactivation of the bacteria under light irradiation. The present study is of interest for opening up tremendous opportunities to make good use of ZIF-8 and other MOFs in applications to combat bacteria, because of their excellent antibacterial activity and facile preparation method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 51:990–993

    Article  Google Scholar 

  2. Woodford N, Livermore DM (2009) Infections caused by Gram-positive bacteria: a review of the global challenge. J Infect 59:S4–S16

    Article  Google Scholar 

  3. Abbas M, Paul M, Huttner A (2017) New and improved? A review of novel antibiotics for Gram-positive bacteria. Clin Microbiol Infec 23:697–703

    Article  CAS  Google Scholar 

  4. Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL, Strauss R, Mertens K, Struyf T, Catry B, Latour K, Ivanov IN, Dobreva EG, Andrasevic AT, Soprek S, Budimir A, Paphitou N, Zemlickova H, Olsen SS, Sonksen UW, Martin P, Ivanova M, Lyytikainen O, Jalava J, Coignard B, Eckmanns T, Abu Sin M, Haller S, Daikos GL, Gikas A, Tsiodras S, Kontopidou F, Toth A, Hajdu A, Guolaugsson O, Kristinsson KG, Murchan S, Burns K, Dsstat PP, Gagliotti C, Dumpis U, Liuimiene A, Perrin M, Borg MA, de Greeff SC, Monen JCM, Koek MBG, Elstrom P, Zabicka D, Deptula A, Hryniewicz W, Canica M, Nogueira PJ, Fernandes PA, Manageiro V, Popescu GA, Serban RI, Schreterova E, Litvova S, Stefkovicova M, Kolman J, Klavs I, Korosec A, Aracil B, Asensio A, Perez-Vazquez M, Billstrom H, Larsson S, Reilly JS, Johnson A, Hopkins S, G. Burden Amr Collaborative (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet. Infect. Dis. 19:56–66

    Article  Google Scholar 

  5. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S (2018) Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 4:18033

    Article  Google Scholar 

  6. Miller KP, Wang L, Benicewicz BC, Decho AW (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44:7787–7807

    Article  CAS  Google Scholar 

  7. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—“a battle of the Titans.” Front Microbil 9:1441

    Article  Google Scholar 

  8. Gao WW, Thamphiwatana S, Angsantikul P, Zhang LF (2014) Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:532–547

    Article  CAS  Google Scholar 

  9. Liu LH, Yang J, Xie JP, Luo ZT, Jiang J, Yang YY, Liu SM (2013) The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale 5:3834–3840

    Article  CAS  Google Scholar 

  10. Qing G, Zhao X, Gong N, Chen J, Li X, Gan Y, Wang Y, Zhang Z, Zhang Y, Guo W, Luo Y, Liang XJ (2019) Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nat Commun 10:4336

    Article  Google Scholar 

  11. Guo YF, Fang WJ, Fu JR, Wu Y, Zheng J, Gao GQ, Chen C, Yan RW, Huang SG, Wang CC (2018) Facile synthesis of Ag@ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities. Appl Surf Sci 435:149–155

    Article  CAS  Google Scholar 

  12. Fang WJ, Zhang HY, Wang X, Wei WM, Shen YJ, Yu JS, Liang JX, Zheng J, Shen YX (2017) Facile synthesis of tunable plasmonic silver core/magnetic Fe3O4 shell nanoparticles for rapid capture and effective photothermal ablation of bacterial pathogens. New J Chem 41:10155–10164

    Article  CAS  Google Scholar 

  13. Zhu Y, Xu J, Wang YM, Chen C, Gu HC, Chai YM, Wang Y (2020) Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res 13:389–400

    Article  CAS  Google Scholar 

  14. Zhao X, Jia Y, Dong R, Deng J, Tang H, Hu F, Liu S, Jiang X (2020) Bimetallic nanoparticles against multi-drug resistant bacteria. Chem Commun (Camb, Engl) 56:10918–10921

    Article  CAS  Google Scholar 

  15. Sun D, Pang X, Cheng Y, Ming J, Xiang S, Zhang C, Lv P, Chu C, Chen X, Liu G, Zheng N (2020) Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano 14:2063–2076

    Article  CAS  Google Scholar 

  16. Feng W, Liu N, Gao L, Zhou Q, Yu L, Ye X, Huo J, Huang X, Li P, Huang W (2021) Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines. J Mater Sci Technol 69:188–199. https://doi.org/10.1016/j.jmst.2020.08.021

    Article  Google Scholar 

  17. Ma W, Li Y, Zhang M, Gao S, Cui J, Huang C, Fu G (2020) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 12:34999–35010

    Article  CAS  Google Scholar 

  18. Lv D, Wang RX, Tang GS, Mou ZP, Lei JD, Han JQ, De Smedt S, Xiong RH, Huang CB (2019) Functionalised nanoparticles complexed with antibiotic efficiently kill MRSA and other bacteria. ACS Appl Mater Interfaces 11:12880–12889

    Article  CAS  Google Scholar 

  19. Tang GS, Xiong RH, Lv D, Xu RX, Braeckmans K, Huang CB, De Smedt SC (2019) Gas-shearing fabrication of multicompartmental microspheres: a one-step and oil-free approach. Adv Sci 6:1802342

    Article  Google Scholar 

  20. Tang G, Chen L, Lian L, Li F, Ravanbakhsh H, Wang M, Zhang YS, Huang C (2020) Designable dual-power micromotors fabricated from abiocompatible gas shearing strategy. Chem Eng J 407:127187

    Article  Google Scholar 

  21. Karakeçili A, Topuz B, Korpayev S, Erdek M (2019) Metal-organic frameworks for on-demand pH controlled delivery of vancomycinfrom chitosan scaffolds. Mater Sci Eng C 105:110098

    Article  Google Scholar 

  22. Qi GB, Li LL, Yu FQ, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5:10874–10881

    Article  CAS  Google Scholar 

  23. Wang L, Chen YP, Miller KP, Cash BM, Jones S, Glenn S, Benicewicz BC, Decho AW (2014) Functionalised nanoparticles complexed with antibiotic efficiently kill MRSA and other bacteria. Chem Commun 50:12030–12033

    Article  CAS  Google Scholar 

  24. Kaur A, Goyal D, Kumar R (2018) Surfactant mediated interaction of vancomycin with silver nanoparticles. Apply Surf Sci 449:23–30

    Article  CAS  Google Scholar 

  25. Zhang CY, Wang CW, Xiao R, Tang L, Huang J, Wu D, Liu SW, Wang Y, Zhang D, Wang SQ, Chen XM (2018) Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mat Chem B 6:3751–3761

    Article  CAS  Google Scholar 

  26. Esmaeili A, Ghobadianpour S (2016) Vancomycin loaded superparamagnetic MnFe2O4 nanoparticles coated with PEGylated chitosan to enhance antibacterial activity. Int J Pharm 501:326–330

    Article  CAS  Google Scholar 

  27. Chen GJ, Li Z, Wang XK, Xie LJ, Qi QQ, Fang WJ (2014) Preparation of CTAB-loaded magnetic nanospheres for rapid bacterial capture and decontamination. Mater Lett 134:290–294

    Article  CAS  Google Scholar 

  28. Gao G, Jiang YW, Jia H-R, Wu FG (2019) Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 188:83–95

    Article  CAS  Google Scholar 

  29. Zhang W, Taheri-Ledari R, Hajizadeh Z, Zolfaghari E, Ahghari MR, Maleki A, Hamblin MR, Tian Y (2020) Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. Nanoscale 12:3855–3870

    Article  CAS  Google Scholar 

  30. Wang SG, Chen YC, Chen YC (2018) Antibacterial gold nanoparticle-based photothermal killing of vancomycin-resistant bacteria. Nanomedicine 13:1405–1416

    Article  CAS  Google Scholar 

  31. Ma K, Dong P, Liang M, Yu S, Chen Y, Wang F (2020) Facile assembly of multifunctional antibacterial nanoplatform leveraging synergistic sensitization between silver nanostructure and vancomycin. ACS Appl Mater Interfaces 12:6955–6965

    Article  CAS  Google Scholar 

  32. Chen YH, Li TJ, Tsai BY, Chen LK, Lai YH, Li MJ, Tsai CY, Tsai PJ, Shieh DB (2019) Vancomycin-loaded nanoparticles enhance sporicidal and antibacterial efficacy for clostridium difficile infection. Front Microbiol 10:1141–1141

    Article  Google Scholar 

  33. Chavan C, Kamble S, Murthy AVR, Kale SN (2020) Ampicillin-mediated functionalized gold nanoparticles against ampicillin-resistant bacteria: strategy, preparation and interaction studies. Nanotechnology 31:215604

    Article  CAS  Google Scholar 

  34. Zou ZH, Sun J, Li Q, Pu Y, Liu JQ, Sun RQ, Wang LY, Jiang TT (2020) Vancomycin modified copper sulfide nanoparticles for photokilling of vancomycin-resistant enterococci bacteria. Colloid Surf B 189:110875

    Article  CAS  Google Scholar 

  35. Gu H, Ho PL, Tsang KWT, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J Am Chem Soc 125:15702–15703

    Article  CAS  Google Scholar 

  36. Li XN, Robinson SM, Gupta A, Saha K, Jiang ZW, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:10682–10686

    Article  CAS  Google Scholar 

  37. Ghaffar I, Imran M, Perveen S, Kanwal T, Saifullah S, Bertino MF, Ehrhardt CJ, Yadavalli VK, Shah MR (2019) Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Mater Sci Eng C 105:110111

    Article  CAS  Google Scholar 

  38. Zheng HQ, Zhang YN, Liu LF, Wan W, Guo P, Nystrom AM, Zou XD (2016) One-pot synthesis of metal organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968

    Article  CAS  Google Scholar 

  39. Li N, Zhou L, Jin XY, Owens G, Chen ZL (2019) Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J Hazard Mater 366:563–572

    Article  CAS  Google Scholar 

  40. Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron MG, Simard B (2008) Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2:1777–1788

    Article  CAS  Google Scholar 

  41. Walsh C (1999) Deconstructing vancomycin. Science 284:442–443

  42. Rao J, Lahiri J, Isaacs L, Weis RM, Whitesides GM (1998) A trivalent system from vancomycin center dot D-Ala-D-Ala with higher affinity than avidin-biotin. Science 280:708–711

  43. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  44. Fan GD, Zheng XM, Luo J, Peng HP, Lin H, Bao MC, Hong L, Zhou JJ (2018) Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light. Chem Eng J 351:782–790

    Article  CAS  Google Scholar 

  45. Fan GD, Luo J, Guo L, Lin RJ, Zheng XM, Snyder SA (2018) Doping Ag/AgCl in zeolitic imidazolate framework-8 (ZIF-8) to enhance the performance of photodegradation of methylene blue. Chemosphere 209:44–52

    Article  CAS  Google Scholar 

  46. Li P, Li JZ, Feng X, Li J, Hao YC, Zhang JW, Wang H, Yin AX, Zhou JW, Ma XJ, Wang B (2019) Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat Commun 10:2177

    Article  CAS  Google Scholar 

  47. Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    Article  CAS  Google Scholar 

  48. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) ChemInform abstract: reactivity of perhydroxyl/superoxide radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  49. Yang C, You X, Cheng JH, Zheng HD, Chen YC (2017) A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl Catal B: Environ 200:673–680

    Article  CAS  Google Scholar 

  50. Dong F, Li Q, Sun Y, Ho WK (2014) Noble metal-like behavior of plasmonic bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal 4:4341–4350

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21703255) the Natural Science Foundation of Anhui Province (Nos. 1908085MB47, 1708085MB35), the Key Projects of Anhui Province University Outstanding Youth Talent Support Program (No. gxyqZD2018021) and the Research Fund for the Doctoral Program of Anhui Medical University (No. XJ201808) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Zhao, Huabin Huang or Weijun Fang.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, C., Zhou, D., Xu, J. et al. One-pot synthesis of vancomycin-encapsulated ZIF-8 nanoparticles as multivalent and photocatalytic antibacterial agents for selective-killing of pathogenic gram-positive bacteria. J Mater Sci 56, 9434–9444 (2021). https://doi.org/10.1007/s10853-021-05828-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05828-y