Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust and flexible free-standing polyimide/SiOx nanocomposite one-dimensional photonic crystals with high reflectance

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible free-standing one-dimensional photonic crystals (1DPCs) have attracted tremendous attentions owing to the simplest structure and promising applications in various fields. However, that most of flexible 1DPCs need dozens of stacks to achieve excellent optical properties and weak robustness in extreme environments hinder their practical applications. Herein, we prepare a series of robust, flexible free-standing polyimide (PI)/SiOx nanocomposite 1DPCs by solution process. Inorganic SiOx with low refractive index (n) is derived from the precursor perhydropolysilazane (PHPS) while the super-engineering plastic PI is served as the high-refractive-index constitution. Thanks to the high refractive index contrast (Δn) and uniform micromorphology of both materials, vivid PI/SiOx 1DPCs with tunable photonic bandgap are obtained and the reflectance is high up to 97% within only 9 layers. Due to the intrinsic properties and covalent binding between PI and SiOx layers, the free-standing nanocomposite remains stable in the wide range of – 196–200 °C and has no degradation of optical performance after bending deformation for 500 times. Additionally, PI/SiOx 1DPCs show great resistance to organic solvent, acid solution and ultraviolet (UV) radiation. Therefore, it is envisioned that the flexible free-standing PI/SiOx 1DPCs have great potential for applications in harsh environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The raw data can be provided if requested.

References

  1. Sadat SF, Mehrdad M (2021) A new route to designing a one-dimensional multiperiodic photonic crystal with adjustable photonic band gap and enhanced electric field localization. Opt Commun 493:126999. https://doi.org/10.1016/j.optcom.2021.126999

    Article  CAS  Google Scholar 

  2. Wu P, Wang J, Jiang L (2020) Bio-inspired photonic crystal patterns. Mater Horiz 7(2):338–365. https://doi.org/10.1039/c9mh01389j

    Article  CAS  Google Scholar 

  3. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062. https://doi.org/10.1103/PhysRevLett.58.2059

    Article  CAS  Google Scholar 

  4. Kou D, Zhang S, Lutkenhaus JL, Wang L, Tang B, Ma W (2018) Porous organic/inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents. J Mater Chem C 6(11):2704–2711. https://doi.org/10.1039/c7tc05390h

    Article  CAS  Google Scholar 

  5. Pavlichenko I, Exner AT, Guehl M, Lugli P, Scarpa G, Lotsch BV (2011) Humidity-enhanced thermally tunable TiO2/SiO2 Bragg stacks. J Phys Chem C 116(1):298–305. https://doi.org/10.1021/jp208733t

    Article  CAS  Google Scholar 

  6. Colodrero S, Ocaña M, González-Elipe AR, Míguez H (2008) Response of nanoparticle-based one-dimensional photonic crystals to ambient vapor pressure. Langmuir 24(16):9135–9139. https://doi.org/10.1021/la801210q

    Article  CAS  Google Scholar 

  7. Wang Z, Zhang J, Xie J et al (2010) Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band. Adv Funct Mater 20(21):3784–3790. https://doi.org/10.1002/adfm.201001195

    Article  CAS  Google Scholar 

  8. Yan P, Fei G, Su Y, Shang G, Li H, Wu B, Zhang L (2012) Anti-counterfeiting of one-dimensional alumina photonic crystal by creating defects. Electrochem Solid-State Lett 15(3):K23–K26. https://doi.org/10.1149/2.015203esl

    Article  CAS  Google Scholar 

  9. Ma W, Kou Y, Zhao P, Zhang S (2020) Bioinspired structural color patterns derived from 1D photonic crystals with high saturation and brightness for double anti-counterfeiting decoration. ACS Appl Polym Mater 2(4):1605–1613. https://doi.org/10.1021/acsapm.0c00047

    Article  CAS  Google Scholar 

  10. Bronnbauer C, Hornich J, Gasparini N et al (2015) Printable dielectric mirrors with easily adjustable and well-defined reflection maxima for semitransparent organic solar cells. Adv Opt Mater 3(10):1424–1430. https://doi.org/10.1002/adom.201500216

    Article  CAS  Google Scholar 

  11. Zhang W, Anaya M, Lozano G, Calvo ME, Johnston MB, Miguez H, Snaith HJ (2015) Highly efficient perovskite solar cells with tunable structural color. Nano Lett 15(3):1698–1702. https://doi.org/10.1021/nl504349z

    Article  CAS  Google Scholar 

  12. Zhang Y, Peng Z, Cai C et al (2016) Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDPT:PSS layer. J Mater Chem A 4(30):11821–11828. https://doi.org/10.1039/c6ta05249e

    Article  CAS  Google Scholar 

  13. Ma W, Li S, Kou D, Lutkenhaus JL, Zhang S, Tang B (2019) Flexible, self-standing and patternable P(MMA-BA)/TiO2 photonic crystals with tunable and bright structural colors. Dyes Pigm 160:740–746. https://doi.org/10.1016/j.dyepig.2018.08.061

    Article  CAS  Google Scholar 

  14. Kang HS, Lee J, Cho SM et al (2017) Printable and rewritable full block copolymer structural color. Adv Mater 29(29):1700084. https://doi.org/10.1002/adma.201700084

    Article  CAS  Google Scholar 

  15. Kang Y, Walish JJ, Gorishnyy T, Thomas EL (2007) Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater 6(12):957–960. https://doi.org/10.1038/nmat2032

    Article  CAS  Google Scholar 

  16. Yue Y, Gong JP (2015) Tunable one-dimensional photonic crystals from soft materials. J Photochem Photobiol, C 23:45–67. https://doi.org/10.1016/j.jphotochemrev.2015.05.001

    Article  CAS  Google Scholar 

  17. Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV (2020) Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 49(3):983–1031. https://doi.org/10.1039/c8cs01007b

    Article  CAS  Google Scholar 

  18. Kazmierczak T, Song H, Hiltner A, Baer E (2007) Polymeric one-dimensional photonic crystals by continuous coextrusion. Macromol Rapid Commun 28(23):2210–2216. https://doi.org/10.1002/marc.200700367

    Article  CAS  Google Scholar 

  19. Sandrock M, Wiggins M, Shirk JS, Tai H, Ranade A, Baer E, Hiltner A (2004) A widely tunable refractive index in a nanolayered photonic material. Appl Phys Lett 84(18):3621–3623. https://doi.org/10.1063/1.1738513

    Article  CAS  Google Scholar 

  20. Calvo ME, Míguez H (2010) Flexible, adhesive, and biocompatible Bragg mirrors based on polydimethylsiloxane infiltrated nanoparticle multilayers. Chem Mater 22(13):3909–3915. https://doi.org/10.1021/cm1001016

    Article  CAS  Google Scholar 

  21. Castro Smirnov JR, Calvo ME, Míguez H (2013) Selective UV reflecting mirrors based on nanoparticle multilayers. Adv Funct Mater 23(22):2805–2811. https://doi.org/10.1002/adfm.201202587

    Article  CAS  Google Scholar 

  22. Liu C, Zhang L, Zhang X, Jia Y, Di Y, Gan Z (2020) Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring. ACS Appl Mater Interfaces 12(36):40979–40984. https://doi.org/10.1021/acsami.0c13618

    Article  CAS  Google Scholar 

  23. Wu Y, Zhang K, Yang B (2019) Ordered hybrid micro/nanostructures and their optical applications. Adv Opt Mater 7(7):1800980. https://doi.org/10.1002/adom.201800980

    Article  CAS  Google Scholar 

  24. Calvo ME, González-García L, Parra-Barranco J, Barranco A, Jiménez-Solano A, González-Elipe AR, Míguez H (2015) Flexible distributed Bragg reflectors from nanocolumnar templates. Adv Opt Mater 3(2):171–175. https://doi.org/10.1002/adom.201400338

    Article  CAS  Google Scholar 

  25. Zhang J, Xi S, Mao G et al (2021) Robust and efficient UV-reflecting one-dimensional photonic crystals enabled by organic/inorganic nanocomposite thin films for photoprotection of transparent polymers. J Mater Chem C 9(12):4223–4232. https://doi.org/10.1039/d0tc05664b

    Article  CAS  Google Scholar 

  26. Prager L, Dierdorf A, Liebe H et al (2007) Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: access to flexible, transparent barrier coatings. Chem Eur J 13(30):8522–8529. https://doi.org/10.1002/chem.200700351

    Article  CAS  Google Scholar 

  27. Wang Z, Guo S, Liang Q et al (2018) Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high performance and low voltage organic transistor and inverter. Sci China Mater 61(9):1237–1242. https://doi.org/10.1007/s40843-017-9216-2

    Article  CAS  Google Scholar 

  28. Wang D, Ma J, Li P et al (2021) Flexible hard coatings with self-evolution behavior in a low earth orbit environment. ACS Appl Mater Interfaces 13(38):46003–46014. https://doi.org/10.1021/acsami.1c13807

    Article  CAS  Google Scholar 

  29. Li P, Wang D, Zhang Z, Guo Y, Jiang L, Xu C (2020) Room-temperature, solution-processed SiOx via photochemistry approach for highly flexible resistive switching memory. ACS Appl Mater Interfaces 12(50):56186–56194. https://doi.org/10.1021/acsami.0c16556

    Article  CAS  Google Scholar 

  30. Bai L, Zhai L, He M-H, Wang C-O, Mo S, Fan L (2019) Thermal expansion behavior of poly(amide-imide) films with ultrahigh tensile strength and ultralow CTE. Chin J Polym Sci 38(7):748–758. https://doi.org/10.1007/s10118-020-2366-1

    Article  CAS  Google Scholar 

  31. Liu H, Zhai L, Bai L, He M, Wang C, Mo S, Fan L (2019) Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer 163:106–114. https://doi.org/10.1016/j.polymer.2018.12.045

    Article  CAS  Google Scholar 

  32. Zhang GD, Fan L, Bai L, He MH, Zhai L, Mo S (2018) Mesoscopic simulation assistant design of immiscible polyimide/BN blend films with enhanced thermal conductivity. Chin J Polym Sci 36(12):1394–1402. https://doi.org/10.1007/s10118-018-2155-2

    Article  CAS  Google Scholar 

  33. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, New Jersey

    Google Scholar 

  34. Gong Q, Hu X (2014) Photonic crystals principles and applications. CRC Press, Florida

    Book  Google Scholar 

  35. Hardaker SS, Moghazy S, Cha CY, Samuels RJ (1993) Quantitative characterization of optical anisotropy in high refractive index films. J Polym Sci, Part B: Polym Phys 31(13):1951–1963. https://doi.org/10.1002/POLB.1993.090311307

    Article  CAS  Google Scholar 

  36. Calvo ME, Sobrado OS, Lozano G, Míguez H (2009) Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible and transferable Bragg mirrors of high dielectric contrast. J Mater Chem 19(20):3144–3148. https://doi.org/10.1039/B902090J

    Article  CAS  Google Scholar 

  37. DeCorby RG, Ponnampalam N, Nguyen HT, Clement TJ (2007) Robust and flexible free-standing all-dielectric omnidirectional reflectors. Adv Mater 19(2):193–196. https://doi.org/10.1002/adma.200601613

    Article  CAS  Google Scholar 

  38. Peng G, Hao W, Yang D, He S (2004) Degradation of polyimide film under vacuum ultraviolet irradiation. J Appl Polym Sci 94(4):1370–1374. https://doi.org/10.1002/app.20920

    Article  CAS  Google Scholar 

  39. Yang HW, Kao CR, Shigetou A (2017) Fast atom beam- and vacuum-ultraviolet-activated sites for low-temperature hybrid integration. Langmuir 33(34):8413–8419. https://doi.org/10.1021/acs.langmuir.7b02010

    Article  CAS  Google Scholar 

  40. Ektessabi AM, Hakamata S (2000) XPS study of ion beam modified polyimide films. Thin Solid Films 377–378:621–625. https://doi.org/10.1016/s0040-6090(00)01444-9

    Article  Google Scholar 

  41. Lamb RN, Baxter J, Grunze M, Kong CW, Unertl WN (1988) An XPS study of the composition of thin polyimide films formed by vapor deposition. Langmuir 4:249–256. https://doi.org/10.1021/LA00080A003

    Article  CAS  Google Scholar 

  42. Kozuka H, Nakajima K, Uchiyama H (2013) Superior properties of silica thin films prepared from perhydropolysilazane solutions at room temperature in comparison with conventional alkoxide-derived silica gel films. ACS Appl Mater Interfaces 5(17):8329–8336. https://doi.org/10.1021/am400845y

    Article  CAS  Google Scholar 

  43. Zeng Y, Gordiichuk P, Ichihara T et al (2022) Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602(7895):91–95. https://doi.org/10.1038/s41586-021-04296-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Youth Innovation Promotion Association Chinese Academy of Sciences. The authors thank Prof. B. G. from Institute of Chemistry Chinese Academy of Sciences for the assistance of FIB-SEM images.

Author information

Authors and Affiliations

Authors

Contributions

XJ contributed to investigation, data curation, formal analysis, methodology, visualization and writing-original draft. XG contributed to visualization and validation. LZ contributed to methodology. FV contributed to methodology. YX contributed to validation, writing-review & editing. ML contributed to conceptualization and methodology. CX contributed to validation. ZZ contributed to conceptualization, supervision, funding acquisition and writing-review & editing.

Corresponding authors

Correspondence to Yuzheng Xia or Zongbo Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The work is original and has not been published previously or is not under consideration for publication elsewhere. If accepted, it will not be published elsewhere in any form without a copyright holder.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 579 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Guo, X., Zhai, L. et al. Robust and flexible free-standing polyimide/SiOx nanocomposite one-dimensional photonic crystals with high reflectance. J Mater Sci 58, 1656–1669 (2023). https://doi.org/10.1007/s10853-022-08136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08136-1