Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Improved electrochemical performances of LiMnPO4 synthesized by a hydrothermal method for Li-ion supercapatteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing high-performance positrode materials are essential to attain high energy supercapatteries. In this regard, the electrochemical performances of the hydrothermally synthesized LiMnPO4 are studied. The crystal structures of the materials are elucidated using Full-profile XRD Rietveld refinement. The LiMnPO4 particles showed uniform elongated spherical shape with rice-like morphology. The rice-like LiMnPO4 showed a higher specific capacity of 492 C g−1 at 2 mV s−1 than highly agglomerated particles synthesized through sol–gel thermolysis method (191 C g−1) in 1 M LiOH aqueous electrolyte. The supercapattery is fabricated with rice-like LiMnPO4 and activated carbon (AC) as positrode and negatrode, respectively. The supercapattery (AC||LMP-H) delivered a higher capacitance around 99 F g−1 along with an improved energy density of 31 Wh kg−1. On the other hand, the LiMnPO4 prepared by sol–gel thermolysis method exhibited a very low capacitance of 35 F g−1 at 0.6 mA for the fabricated device (AC||LMP-S) with the lesser energy density about 11 Wh Kg−1 at a power density of 198 W kg−1. The reason behind the improved performance is explained based on the crystal structure as well as lower charge transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Yu, G.Z. Chen, Redox electrode materials for supercapatteries. J. Power Sources 326, 604–612 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.095

    Article  CAS  Google Scholar 

  2. Y. Ma, H. Chang, M. Zhang, Y. Chen, Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27(36), 5296–5308 (2015). https://doi.org/10.1002/adma.201501622

    Article  CAS  Google Scholar 

  3. F. Shi, L. Lu, X.L. Wang, C.D. Gu, J.P. Tu, Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 4(79), 41910–41921 (2014). https://doi.org/10.1039/C4RA06136E

    Article  CAS  Google Scholar 

  4. Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured Iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2(7), 588–600 (2016). https://doi.org/10.1002/cnma.201600110

    Article  CAS  Google Scholar 

  5. W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8(9), 9531–9541 (2014). https://doi.org/10.1021/nn503814y

    Article  CAS  Google Scholar 

  6. S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R. Kalai Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl. Energy Mater. 1(1), 78–92 (2018). https://doi.org/10.1021/acsaem.7b00006

    Article  CAS  Google Scholar 

  7. X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017). https://doi.org/10.1002/smll.201701530

    Article  CAS  Google Scholar 

  8. D. Yang, Z. Lu, X. Rui, X. Huang, H. Li, J. Zhu, W. Zhang, Y.M. Lam, H.H. Hng, H. Zhang, Q. Yan, Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. Angew. Chem. 126(35), 9506–9509 (2014). https://doi.org/10.1002/ange.201404615

    Article  Google Scholar 

  9. X. Li, X. Xiao, Q. Li, J. Wei, H. Xue, H. Pang, Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg. Chem. Front. 5, 11–28 (2018). https://doi.org/10.1039/C7QI00434F

    Article  CAS  Google Scholar 

  10. Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao, H. Yang, Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. 4(5), 1600392 (2017). https://doi.org/10.1002/advs.201600392

    Article  CAS  Google Scholar 

  11. Y. Zhan, M. Lu, S. Yang, C. Xu, Z. Liu, J.Y. Lee, Activity of transition-metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in alkaline solution. ChemCatChem 8(2), 372–379 (2016). https://doi.org/10.1002/cctc.201500952

    Article  CAS  Google Scholar 

  12. A. Vlad, N. Singh, J. Rolland, S. Melinte, P.M. Ajayan, J.F. Gohy, Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 4, 4315 (2014). https://doi.org/10.1038/srep04315

    Article  CAS  Google Scholar 

  13. A.K. Sahu, S. Pitchumani, P. Sridhar, A.K. Shukla, Co-assembly of a Nafion-mesoporous zirconium phosphate composite membrane for PEM fuel cells. Fuel Cells 9(2), 139–147 (2009). https://doi.org/10.1002/fuce.200800178

    Article  CAS  Google Scholar 

  14. D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6, 3553–3558 (2013). https://doi.org/10.1039/C3EE42413H

    Article  CAS  Google Scholar 

  15. R. Reeve, P.A. Christensen, A.J. Dickinson, A. Hamnett, K. Scott, Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation. Electrochim. Acta 45(25–26), 4237–4250 (2000). https://doi.org/10.1016/S0013-4686(00)00556-9

    Article  CAS  Google Scholar 

  16. P. Nie, L. Shen, F. Zhang, L. Chen, H. Deng, X. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm 14(13), 4284–4288 (2012). https://doi.org/10.1039/C2CE25094B

    Article  CAS  Google Scholar 

  17. L. Zhang, Q. Qu, L. Zhang, J. Li, H. Zheng, Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries. J. Mater. Chem. A. 2(3), 711–719 (2014). https://doi.org/10.1039/C3TA14010E

    Article  CAS  Google Scholar 

  18. J.V. Laveda, B. Johnson, G.W. Paterson, P.J. Baker, M.G. Tucker, H.Y. Playford, K.M.O. Jenson, S.J.L. Bilinge, S.A. Corr, Structure-property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes. J. Mater. Chem. A 6(1), 127–137 (2018). https://doi.org/10.1039/C7TA04400C

    Article  CAS  Google Scholar 

  19. L. Xu, S. Wang, X. Zhang, T. He, F. Lu, H. Li, J. Ye, A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors. Appl. Surf. Sci. 428, 977–985 (2018). https://doi.org/10.1016/j.apsusc.2017.09.247

    Article  CAS  Google Scholar 

  20. S.R.S. Prabaharan, R.A. Star, A.R. Kulkarni, M.S. Michael, Nano-composite LiMnPO4 as new insertion electrode for electrochemical supercapacitors. Curr. Appl. Phys. 15(12), 1624–1633 (2015). https://doi.org/10.1016/j.cap.2015.09.009

    Article  Google Scholar 

  21. T. Drezen, N.H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, Effect of particle size on LiMnPO4 cathodes. J. Power Sources 174(2), 949–953 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.203

    Article  CAS  Google Scholar 

  22. G. Yang, H. Ni, H. Liu, P. Gao, H. Ji, S. Roy, J. Pinto, X. Jiang, The doping effect on the crystal structure and electrochemical properties of LiMnxM1–xPO4 (M = Mg, V, Fe, Co, Gd). J. Power Sources 196(10), 4747–4755 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.064

    Article  CAS  Google Scholar 

  23. J. Fan, Y. Yu, Y. Wang, Q.H. Wu, M. Zheng, Q. Dong, Nonaqueous synthesis of nano-sized LiMnPO4@C as a cathode material for high performance lithium ion batteries. Electrochim. Acta 194, 52–58 (2016). https://doi.org/10.1016/j.electacta.2016.02.090

    Article  CAS  Google Scholar 

  24. N.P.W. Pieczonka, Z. Liu, A. Huq, J.H. Kim, Comparative study of LiMnPO4/C cathodes synthesized by polyol and solid-state reaction methods for Li-ion batteries. J. Power Sources 230, 122–129 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.027

    Article  CAS  Google Scholar 

  25. N.N. Bramnik, H. Ehrenberg, Precursor-based synthesis and electrochemical performance of LiMnPO4. J. Alloys Compd. 464(1–2), 259–264 (2008). https://doi.org/10.1016/j.jallcom.2007.09.118

    Article  CAS  Google Scholar 

  26. S. Zhang, F.L. Meng, Q. Wu, F.L. Liu, H. Gao, M. Zhang, C. Deng, Synthesis and characterization of LiMnPO4 nanoparticles prepared by a citric acid assisted sol-gel method. Int. J. Electrochem. Sci. 8(5), 6603–6609 (2013)

    CAS  Google Scholar 

  27. H. Fang, Z. Pan, L. Li, Y. Yang, G. Yan, G. Li, The possibility of manganese disorder LiMnPO4 and its effect on the electrochemical activity. Electrochem. Commun. 10(7), 1071–1073 (2008). https://doi.org/10.1016/j.elecom.2008.05.010

    Article  CAS  Google Scholar 

  28. C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 13(2), 101–107 (2003). https://doi.org/10.1002/adfm.200390014

    Article  CAS  Google Scholar 

  29. C.C. Wang, J.Y. Ying, Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11(11), 3113–3120 (1999). https://doi.org/10.1021/cm990180f

    Article  CAS  Google Scholar 

  30. M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118(1), 174–180 (2009). https://doi.org/10.1016/j.matchemphys.2009.07.023

    Article  CAS  Google Scholar 

  31. J. Chen, M.J. Vacchio, S. Wang, N. Chernova, P.Y. Zavalij, M.S. Whittingham, The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ion. 178(31–32), 1676–1693 (2008). https://doi.org/10.1016/j.ssi.2007.10.015

    Article  CAS  Google Scholar 

  32. T. Stefanidis, A.G. Nord, Structure studies of thortveitite-like dimanganese diphosphate, Mn2P2O7. Acta Crystallogr. Sect. C 40, 1995–1999 (1984). https://doi.org/10.1107/S0108270184010374

    Article  Google Scholar 

  33. J. Yao, S. Bewlay, K. Konstantionv, V.A. Drozd, R.S. Liu, X.L. Wang, H.K. Liu, G.X. Wang, Characterisation of olivine-type LiMnxFe1–xPO4 cathode materials. J. Alloys Compd. 425(1–2), 362–366 (2006). https://doi.org/10.1016/j.jallcom.2006.01.038

    Article  CAS  Google Scholar 

  34. V. Koleva, R. Stoyanova, E. Zhecheva, Nano-crystalline LiMnPO4 prepared by a new phosphate-formate precursor method. Mater. Chem. Phys. 121(1–2), 370–377 (2010). https://doi.org/10.1016/j.matchemphys.2010.01.043

    Article  CAS  Google Scholar 

  35. V. Koleva, E. Zhecheva, R. Stoyanova, Ordered olivine-type lithium-cobalt and lithium-nickel phosphates prepared by a new precursor method. Eur. J. Inorg. Chem. 26, 4091–4099 (2010). https://doi.org/10.1002/ejic.201000400

    Article  CAS  Google Scholar 

  36. M. Liao, Y. Liu, Z. Hu, Q. Yu, Novel morphologic Co3O4 of flower-like hierarchical microspheres as electrode material for electrochemical capacitors. J. Alloys Compd. 562, 106–110 (2013). https://doi.org/10.1016/j.jallcom.2013.01.120

    Article  CAS  Google Scholar 

  37. S. Trasatti, Physical electrochemistry of ceramic oxides. Electrochim. Acta 36, 225–241 (1991). https://doi.org/10.1016/0013-4686(91)85244-2

    Article  CAS  Google Scholar 

  38. S.M.S. Bhat, B. Babu, M. Feygenson, J.C. Neuefeind, M.M. Shaijumon, Nanostructured Na2Ti9O19 for hybrid sodium-ion capacitors with excellent rate capability. ACS Appl. Mater. Interfaces 10, 437–447 (2018). https://doi.org/10.1021/acsami.7b13300

    Article  CAS  Google Scholar 

  39. C.C. Lee, F.S. Omar, A. Numan, N. Duraisamy, K. Ramesh, S. Ramesh, An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite. J. Solid State Electrochem. 21(11), 3205–3213 (2017). https://doi.org/10.1007/s10008-017-3624-1

    Article  CAS  Google Scholar 

  40. Y.H. Dai, L.B. Kong, K. Yan, M. Shi, Y.C. Luo, L. Kang, Facile fabrication of manganese phosphate nanosheets for supercapacitor applications. Ion. 22(8), 1461–1469 (2016). https://doi.org/10.1007/s11581-016-1652-y

    Article  CAS  Google Scholar 

  41. A.A. Mirghini, M.J. Madito, M.J.,T.M. Mashikhwa, K.O. Oyedotun, A. Bello, N. Manyala, Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J. Colloid Interface Sci. 494, 325–337 (2017). https://doi.org/10.1016/j.jcis.2017.01.098

    Article  CAS  Google Scholar 

  42. Y. Liu, D. Yan, Y. Li, Z. Wu, R. Zhuo, S. Li, J. Feng, J. Wang, P. Yan, Z. Geng, Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochim. Acta 117, 528–533 (2014). https://doi.org/10.1016/j.electacta.2013.11.121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors L. Vasylechko acknowledges the Ministry of Education and Sciences of Ukraine for partial support under Project DB/FerytN0118U000264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Kalai Selvan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharsini, N., Shanmugavani, A., Surendran, S. et al. Improved electrochemical performances of LiMnPO4 synthesized by a hydrothermal method for Li-ion supercapatteries. J Mater Sci: Mater Electron 29, 18553–18565 (2018). https://doi.org/10.1007/s10854-018-9972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9972-5