Abstract
The VO2(B)/rGO composite structure was proposed to improve the gas sensitivity response of VO2(B) at room temperature (25 °C) through replacing the homojunctions by heterojunctions. Pure VO2(B) nanorods were synthesized and composited with flake-shaped rGO by hydrothermal method. The nanorods show smooth surface and the average length is about 1 µm, the average width is about 100 nm. The composition of the samples is VO2(B) and is not affected by the rGO-additive during synthesis.VO2(B) nanorods were connected by sheet-like wrinkled graphene. The gas-sensing measurement of sensor with a NO2 concentration range of 1–5 ppm at room temperature was carried out. The response value of VO2(B)/rGO sensor to 5 ppm NO2 is improved by 23% and can reach up to 1.63 with increasing the rGO concentration. The sensor also shows good selectivity and reproducibility to NO2. The improvement of room temperature sensing performance is related to the multiple hetero-junctions formed by the rGO nanosheets. The mechanism of improving the gas sensitivity of the VO2(B)/rGO was further discussed. These results are significance for enhancement the performance of room temperature NO2 sensor.
Similar content being viewed by others
Data availability
The data used to support the findings of this study are available from the corresponding author upon reasonable request.
References
J.L. Domingo, J. Rovira, Environ. Res. 187, 109650 (2020)
P. Zhou, Y. Shen, W. Lu, S. Zhao, T. Li, X. Zhong, B. Cui, D. Wei, Y. Zhang, J. Alloy. Compd. 828, 154395 (2020)
H. Xu, M.K. Akbari, S. Kumar, F. Verpoort, S. Zhuiykov, Nanoscale 13(13), 300 (2021)
A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, Sens. Actuators B: Chem. 171(171), 25 (2012)
A. Dey, Mater. Sci. Eng.: B 229, 206 (2018)
Z. Li, Z. Lin, N. Wang, Y. Huang, J. Wang, W. Liu, Y. Fu, Z. Wang, Mater. Design 110, 532 (2016)
Z. Zhang, M. Haq, Z. Wen, Z. Ye, L. Zhu, Appl. Surf. Sci. 434, 891 (2018)
J. Liang, Q. Lou, W. Wu, K. Wang, C. Xuan, A.C.S. Appl, Mater. Inter 27, 31968 (2021)
J. Liang, R. Yang, K. Zhu, M. Hu, J. Mater. Sci. Mater. El. 29, 3780 (2018)
M. Li, M. Hu, D. Jia, S. Ma, Sens. Actuators B 186, 140 (2013)
G. Jyoti, J. Varma, Alloy. Compd. 806, 1469 (2019)
H. Yousefi, B. Hashemi, A. Mirzaei, H. Roshan, M. Sheikhi, Mat. Sci. Semicon. Proc. 117, 105172 (2020)
Z. Wang, Y. Zhang, S. Liu, T. Zhang, Sens. Actuators B Chem. 222, 893 (2016)
S. Li, Y. Cen, Q. Xiang, M.K. Aslam, B.B. Hu, W. Li, Y. Tang, Q. Yu, Y.P. Liu, C.G. Chen, J. Mater. Chem. A. 7, 1658 (2019)
L.F. Guo, T. Li, Sens. Actuators B 255, 2258 (2018)
G.H. Lu, L.E. Ocola, J.H. Chen, Appl. Phys. Lett. 94, 083111 (2009)
H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang, Y. Zheng, Sens. Actuators B 337, 129783 (2021)
P. Cao, Y. Cai, D. Pawar, S.T. Navale, C. Rao, S. Han, Y. WanG, M. Fang, X. Liu, Y. Zeng, W. Liu, D. Zhu, Y. Lu, Chem. Eng. J. 401, 125491 (2020)
Z.U. Abideen, J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sens. Actuators B 2018, 255 (1884)
X. Zhu, Y. Guo, H. Ren, C. Gao, Y. Zhou, Sens. Actuators B Chem. 248, 560 (2017)
D. Toloman, A. Popa, M. Stan, C. Socaci, A.R. Biris, G. Katona, F. Tudorache, I. Petrila, F. Iacomi, Appl. Surf. Sci. 402, 410 (2017)
X. Liu, J.W. Li, J.B. Sun, X.T. Zhang, RSC Adv. 15, 73699 (2015)
X. Wang, A. Marikutsa, M. Rumyantsev, A. Gaskov, A. Knotko, X. Li, IEEE Sens. J. 20, 4562 (2020)
R. Jain, Y. Lei, R. Maric, Sens. Actuators B: Chem. 236, 163 (2016)
J. Ri, X. Li, C. Shao, Y. Liu, C. Han, X. Li, Y. Liu, Sens. Actuators B: Chem. 317, 128194 (2020)
J. Liang, K. Zhu, R. Yang, M. Hu, Ceram. Int. 44, 2261 (2018)
G.D. Li, Y.B. Shen, P.F. Zhou, F.L. Hao, P. Fang, D.Z. Wei, D. Meng, X.G. San, Mater. Charact. 163, 110284 (2020)
J. Liang, W. Wu, Q. Lou, K. Wang, C. Xuan, J. Alloy. Compd. 890, 161837 (2022)
J. Liang, W. Li, J. Liu, M. Hu, J. Alloy. Compd. 687, 845 (2016)
W. Zhang, M. Hu, X. Liu, N. Li, W. Yan, Acta Phys. Sin. 65(09), 27 (2016)
S. Han, H. Moon, M. Noh, J. Pyeon, Y. Shim, S. Nahm, J. Kim, K. Yoo, C. Kang, Sens. Actuators, B Chem. 241, 40 (2017)
S. Bai, Y. Ma, X. Shu, J. Sun, Y. Feng, R. Luo, D. Li, A. Ghen, Ind. Eng. Chem. Res. 56, 2616 (2018)
A.V. Grigorieva, E.A. Goodilin, A.V. Anikina, I.V. Kolesnik, Y.D. Tretyakov, Mendeleev Commun. 18, 71 (2008)
B. Bhangare, N.S. Ramgir, A. Pathak, Mat. Sci. Semicon. Proc. 105, 104726 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 61471264) and Science and Technology Program Project of Tianjin (Grant Nos. 21YDTPJC00110, 19ZXZNGX00060).
Funding
National Natural Science Foundation of China (Grant No. 61471264). Science and Technology Program Project of Tianjin (Grant Nos. 21YDTPJC00110, 19ZXZNGX00060).
Author information
Authors and Affiliations
Contributions
JL: conceptualization, methodology, writing—review and editing. WW: formal analysis, investigation, writing—original draft, visualization. QL, KW and CX: writing—review and editing.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liang, J., Wu, W., Lou, Q. et al. Room temperature NO2 sensing performance enhancement of VO2(B) composited rGO structure. J Mater Sci: Mater Electron 33, 15473–15482 (2022). https://doi.org/10.1007/s10854-022-08454-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-022-08454-9