Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Osteoporosis is a systemic skeletal disorder associated with reduced bone mineral density and the consequent high risk of bone fractures. Current practice relates osteoporosis largely with absolute mass loss. The assessment of variations in chemical composition in terms of the main elements comprising the bone mineral and its effect on the bone’s quality is usually neglected. In this study, we evaluate the ratio of the main elements of bone mineral, calcium (Ca), and phosphorus (P), as a suitable in vitro biomarker for induced osteoporosis. The Ca/P concentration ratio was measured at different sites of normal and osteoporotic rabbit bones using two spectroscopic techniques: Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDX). Results showed that there is no significant difference between samples from different genders or among cortical bone sites. On the contrary, we found that the Ca/P ratio of trabecular bone sections is comparable to cortical sections with induced osteoporosis. Ca/P ratio values are positively related to induced bone loss; furthermore, a different degree of correlation between Ca and P in cortical and trabecular bone is evident. This study also discusses the applicability of AES and EDX to the semiquantitative measurements of bone mineral’s main elements along with the critical experimental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rachner, T.D., Khosla, S., Hofbauer, L.C.: Osteoporosis: now and the future. Lancet 377, 1276–1287 (2011)

    Article  Google Scholar 

  2. Kanis, J.A., Alexeeva, L., Bonjour, J.P., Burkhardt, P., Christiansen, C., Cooper, C., Delmas, P., Johnell, O., Johnston, C., Kanis, J.A., Khaltaev, N., Lips, P., Mazzuoli, G., Melton, L.J., Meunier, P., Seeman, E., Stepan, J., Tosteson, A.: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis—synopsis of a WHO report. Osteoporos. Int. 4, 368–381 (1994)

    Article  Google Scholar 

  3. DeLaet, C.E.D.H., vanHout, L.B., Burger, H., Hofman, A., Pols, H.A.P.: Bone density and risk of hip fracture in men and women: cross sectional analysis. Br. Med. J. 315, 221–225 (1997)

    Article  Google Scholar 

  4. Schuit, S.C.E., van der Klift, M., Weel, A.E.A.M., de Laet, C.E.D.H., Burger, H., Seeman, E., Hofman, A., Uitterlinden, A.G., van Leeuwen, J.P.T.M., Pols, H.A.P.: Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34, 195–202 (2004)

    Article  Google Scholar 

  5. Bouxsein, M.L., Seeman, E.: Quantifying the material and structural determinants of bone strength. Best Pract. Res. Clin. Rheumatol. 23, 741–753 (2009)

    Article  Google Scholar 

  6. Einhorn, T.A.: Bone strength: the bottom line. Calcif. Tissue Int. 51, 333–339 (1992)

    Article  Google Scholar 

  7. Kanis, J.A., Melton, L.J., Christiansen, C., Johnston, C.C., Khaltaev, N.: The diagnosis of osteoporosis. J. Bone Miner. Res. 9, 1137–1141 (1994)

    Article  Google Scholar 

  8. Cummings, S.R., Cauley, J.A., Palermo, L., Ross, P.D., Wasnich, R.D., Black, D., Faulkner, K.G.: Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Osteoporos. Int. 4, 226–229 (1994)

    Article  Google Scholar 

  9. Black, D.M., Bouxsein, M.L., Marshall, L.M., Cummings, S.R., Lang, T.F., Cauley, J.A., Ensrud, K.E., Nielson, C.M., Orwoll, E.S.: Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J. Bone Miner. Res. 23, 1326–1333 (2008)

    Article  Google Scholar 

  10. Carrey, J.D.: Bones: Structure and Mechanics. Princeton University Press, NJ (2006)

    Google Scholar 

  11. van der Harst, M.R., Brama, P.A.J., van de Lest, C.H.A., Kiers, G.H., DeGroot, J., van Weeren, P.R.: An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthr. Cartil. 12, 752–761 (2004)

    Article  Google Scholar 

  12. Hu, Y.Y., Rawal, A., Schmidt-Rohr, K.: Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 107, 22425–22429 (2010)

    Article  ADS  Google Scholar 

  13. Kahn, A.J., Partridge, N.C.: Bone. Vol. 2: The Osteoclast: Bone Resorption In Vivo. CRC Press, Boca Raton, FL (1991)

    Google Scholar 

  14. Peacock, M.: Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, S23–S30 (2010)

    Article  Google Scholar 

  15. Shapiro, R., Heaney, R.P.: Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone 32, 532–540 (2003)

    Article  Google Scholar 

  16. Coats, A.M., Zioupos, P., Aspden, R.M.: Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcif. Tissue Int. 73, 66–71 (2003)

    Article  Google Scholar 

  17. Oelzner, P., Muller, A., Deschner, F., Huller, M., Abendroth, K., Hein, G., Stein, G.: Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcif. Tissue Int. 62, 193–198 (1998)

    Article  Google Scholar 

  18. Fountos, G., Yasumura, S., Glaros, D.: The skeletal calcium/phosphorus ratio: a new in vivo method of determination. Med. Phys. 24, 1303–1310 (1997)

    Article  Google Scholar 

  19. Bolotin, H.H., Sievanen, H.: Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J. Bone Miner. Res. 16, 799–805 (2001)

    Article  Google Scholar 

  20. Tzaphlidou, M., Speller, R., Royle, G., Griffiths, J.: Preliminary estimates of the calcium/phosphorus ratio at different cortical bone sites using synchrotron microCT. Phys. Med. Biol. 51, 1849–1855 (2006)

    Article  Google Scholar 

  21. Neues, F., Epple, M.: X-ray microcomputer tomography for the study of biomineralized endo- and exoskeletons of animals. Chem. Rev. 108, 4734–4741 (2008)

    Article  Google Scholar 

  22. Zaichick, V., Tzaphlidou, M.: Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis. Appl. Radiat. Isotopes 56, 781–786 (2002)

    Article  Google Scholar 

  23. Tzaphlidou, M., Zaichick, V.: Neutron activation analysis of calcium/phosphorus ratio in rib bone of healthy humans. Appl. Radiat. Isotopes 57, 779–783 (2002)

    Article  Google Scholar 

  24. Ishikawa, K., Ducheyne, P., Radin, S.: Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J. Mater. Sci.: Mater. Med. 4, 165–168 (1993)

    Article  Google Scholar 

  25. Bradley, D.A., Farquharson, M.J., Gundogdu, O., Al-Ebraheem, A., Ismail, E.C., Kaabar, W., Bunk, O., Pfeiffer, F., Falkenberge, G., Bailey, M.: Applications of condensed matter understanding to medical tissues and disease progression: Elemental analysis and structural integrity of tissue scaffolds. Radiat. Phys. Chem. 79, 162–175 (2010)

    Article  ADS  Google Scholar 

  26. Bailey, M.J., Coe, S., Grant, D.M., Grime, G.W., Jeynes, C.: Accurate determination of the Ca: P ratio in rough hydroxyapatite samples by SEM-EDS, PIXE and RBS – a comparative study. X-Ray Spectrom. 38, 343–347 (2009)

    Article  Google Scholar 

  27. Milovanovic, P., Potocnik, J., Stoiljkovic, M., Djonic, D., Nikolic, S., Neskovic, O., Djuric, M., Rakocevic, Z.: Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: Implications for bone fragility in elderly women. Acta Biomater. 7, 3446–3451 (2011)

    Article  Google Scholar 

  28. Akesson, K., Grynpas, M.D., Hancock, R.G.V., Odselius, R., Obrant, K.J.: Energy-dispersive X-ray microanalysis of the bone mineral content in human trabecular bone: a comparison with ICPES and neutron activation analysis. Calcif. Tissue Int. 55, 236–239 (1994)

    Article  Google Scholar 

  29. Xu, J.D., Zhu, P.Z., Gan, Z.H., Sahar, N., Tecklenburg, M., Morris, M.D., Kohn, D.H., Ramamoorthy, A.: Natural-abundance Ca-43 solid-state NMR spectroscopy of bone. J. Am. Chem. Soc. 132, 11504–11509 (2010)

    Article  Google Scholar 

  30. Wu, Y., Ackerman, J.L., Strawich, E.S., Rey, C., Kim, H.M., Glimcher, M.J.: Phosphate ions in bone: Identification of a calcium-organic phosphate complex by P-31 solid-state NMR spectroscopy at early stages of mineralization. Calcif. Tissue Int. 72, 610–626 (2003)

    Article  Google Scholar 

  31. Wu, Y.T., Ackerman, J.L., Kim, H.M., Rey, C., Barroug, A., Glimcher, M.J.: Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J. Bone Miner. Res. 17, 472–480 (2002)

    Article  Google Scholar 

  32. Hübler, R., Blando, E., Gaião, L., Kreisner, P.E., Post, L.K., Xavier, C.B., de Oliveira, M.G.: Effects of low-level laser therapy on bone formed after distraction osteogenesis. Laser Med. Sci. 25, 213–219 (2010)

    Article  Google Scholar 

  33. Cassella, J.P., Garrington, N., Stamp, T.C.B., Ali, S.Y.: An electron-probe X-ray microanalytical study of bone mineral in osteogenesis imperfecta. Calcif. Tissue Int. 56, 118–122 (1995)

    Article  Google Scholar 

  34. Benhayoune, H., Charlier, D., Jallot, E., Laquerriere, P., Balossier, G., Bonhomme, P.: Evaluation of the Ca/P concentration ratio in hydroxyapatite by STEM-EDXS: influence of the electron irradiation dose and temperature processing. J. Phys. D Appl. Phys. 34, 141–147 (2001)

    Article  ADS  Google Scholar 

  35. Kourkoumelis, N., Tzaphlidou, M.: Spectroscopic assessment of normal cortical bone: differences in relation to bone site and sex. TheScientificWorldJOURNAL 10, 402–412 (2010). doi:10.1100/tsw.2010.43

    Article  Google Scholar 

  36. Watanabe, K., Okawa, S., Kanatani, M., Homma, K.: Surface analysis of commercially pure titanium implant retrieved from rat bone. Part 1: Initial biological response of sandblasted surface. Dent. Mater. J. 28, 178–184 (2009)

    Article  Google Scholar 

  37. Zoehrer, R., Perilli, E., Kuliwaba, J., Shapter, J., Fazzalari, N., Voelcker, N.: Human bone material characterization: Integrated imaging surface investigation of male fragility fractures. Osteoporos. Int. 1–13 (2011). doi:10.1007/s00198-011-1688-9

    Google Scholar 

  38. Balatsoukas, I., Kourkoumelis, N., Tzaphlidou, M.: Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites. J. Appl. Phys. 108, 074701 (2010). doi:10.1063/1.3490118

    Article  Google Scholar 

  39. Miller, R.G., Bowles, C.Q., Eick, J.D., Gutshall, P.L.: Auger electron spectroscopy of dentin: Elemental quantification and the effects of electron and ion bombardment. Dent. Mater. 9, 280–285 (1993)

    Article  Google Scholar 

  40. Wieliczka, D.M., Spencer, P., Kruger, M.B., Eick, J.D.: Spectroscopic characterization of the dentin/adhesive interface. J. Dent. Res. 75, 1758–1758 (1996)

    Google Scholar 

  41. Korn, D., Soyez, G., Elssner, G., Petzow, G., Bres, E.F., d’Hoedt, B., Schulte, W.: Study of interface phenomena between bone and titanium and alumina surfaces in the case of monolithic and composite dental implants. J. Mater. Sci.: Mater. Med. 8, 613–620 (1997)

    Article  Google Scholar 

  42. Kang, B.S., Sul, Y.T., Oh, S.J., Lee, H.J., Albrektsson, T.: XPS, AES and SEM analysis of recent dental implants. Acta. Biomater. 5, 2222–2229 (2009)

    Article  Google Scholar 

  43. Jones, F.H.: Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 42 75–205 (2001)

    Article  ADS  Google Scholar 

  44. Obrant, K.J., Odselius, R.: Electron-microprobe investigation of calcium and phosphorus concentration in human-bone trabeculae—both normal and in posttraumatic osteopenia. Calcif. Tissue Int. 37, 117–120 (1985)

    Article  Google Scholar 

  45. Rai, D.V., Darbari, R., Aggarwal, L.M.: Age-related changes in the elemental constituents and molecular behaviour of bone. Indian J. Biochem. Biophys. 42, 127–130 (2005)

    Google Scholar 

  46. Kolroser, G., Kasimir, M.T., Eichmair, E., Nigisch, A., Simon, P., Weigel, G.: Scanning electron microscopy and energy-dispersive X-ray microanalysis: a valuable tool for studying cell surface antigen expression on tissue-engineered scaffolds. Tissue Eng. Pt. C: Meth. 15, 257–263 (2009)

    Article  Google Scholar 

  47. Roschger, P., Fratzl, P., Klaushofer, K., Rodan, G.: Mineralization of cancellous bone after alendronate and sodium fluoride treatment: a quantitative backscattered electron imaging study on minipig ribs. Bone 20, 393–397 (1997)

    Article  Google Scholar 

  48. Kanaya, K., Okayama, S.: Penetration and energy-loss theory of electrons in solid targets. J. Phys. D Appl. Phys. 5, 43–58 (1972)

    Article  ADS  Google Scholar 

  49. Krause, M.O., Oliver, J.H.: Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data. 8, 329–338 (1979)

    Article  ADS  Google Scholar 

  50. Armour, K.J., Armour, K.E.: Methods in Molecular Medicine, Vol. 80: Bone Research Protocols: Inflammation-Induced Osteoporosis, The IMO Model. Humana Press Inc., Totowa, NJ (2003)

    Google Scholar 

  51. Speller, R., Pani, S., Tzaphlidou, M., Horrocks, J.: MicroCT analysis of calcium/phosphorus ratio maps at different bone sites. Nucl. Instrum. Meth. A 548, 269–273 (2004)

    Article  ADS  Google Scholar 

  52. Turner, A.S.: Animal models of osteoporosis—necessity and limitations. Eur. Cells Mater. 1, 66–81 (2001)

    Google Scholar 

  53. Pignatel, G.U., Queirolo, G.: Electron and ion beam effects in Auger electron spectroscopy on insulating materials. Radiat. Eff. Defects Solids 79, 291–303 (1983)

    Article  Google Scholar 

  54. Vanraemdonck, W., Ducheyne, P., Demeester, P.: Auger-electron spectroscopic analysis of hydroxylapatite coatings on titanium. J. Am. Ceram. Soc. 67, 381–384 (1984)

    Article  Google Scholar 

  55. Bloebaum, R.D., Holmes, J.L., Skedros, J.G.: Mineral content changes in bone associated with damage induced by the electron beam. Scanning 27, 240–248 (2005)

    Article  Google Scholar 

  56. Egerton, R.F., Li, P., Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004)

    Article  Google Scholar 

  57. Emfietzoglou, D., Kyriakou, I., Garcia-Molina, R., Abril, I., Kostarelos, K.: Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes. J. Appl. Phys. 108, 054312 (2010). doi:10.1063/1.3463405

    Article  ADS  Google Scholar 

  58. Holmes, J.L., Bachus, K.N., Bloebaum, R.D.: Thermal effects of the electron beam and implications of surface damage in the analysis of bone tissue. Scanning 22, 243–248 (2000)

    Article  Google Scholar 

  59. Walther, P., Wehrli, E., Hermann, R., Müller, M.: Double-layer coating for high-resolution low-temperature scanning electron microscopy. J. Microsc. 179, 229–237 (1995)

    Article  Google Scholar 

  60. Vajda, E.G., Skedros, J.G., Bloebaum, R.D.: Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive X-ray spectrometry. Scanning 20, 527–535 (1998)

    Article  Google Scholar 

  61. Boyce, T.M., Bloebaum, R.D., Bachus, K.N., Skedros, J.G.: Reproducible method for calibrating the backscattered electron signal for quantitative assessment of mineral-content in bone. Scanning Microsc. 4, 591–603 (1990)

    Google Scholar 

  62. Suetsugu, Y., Hirota, K., Fujii, K., Tanaka, J.: Compositional distribution of hydroxyapatite surface and interface observed by electron spectroscopy. J. Mater. Sci. 31, 4541–4544 (1996)

    Article  ADS  Google Scholar 

  63. Tanuma, S., Powell, C.J., Penn, D.R.: Calculations of electron inelastic mean free paths. VIII. Data for 15 elemental solids over the 50–2000 eV range. Surf. Interface Anal. 37, 1–14 (2005)

    Article  Google Scholar 

  64. Smekal, W., Werner, W.S.M., Powell, C.J.: Simulation of electron spectra for surface analysis (SESSA): a novel software tool for quantitative Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Surf. Interface Anal. 37, 1059–1067 (2005)

    Article  Google Scholar 

  65. Tzaphlidou, M., Zaichick, V.: Sex and age related Ca/P ratio in cortical bone of iliac crest of healthy humans. J. Radioanal. Nucl. Chem. 259, 347–349 (2004)

    Article  Google Scholar 

  66. Kuhn, L.T., Grynpas, M.D., Rey, C.C., Wu, Y., Ackerman, J.L., Glimcher, M.J.: A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages. Calcif. Tissue Int. 83, 146–154 (2008)

    Article  Google Scholar 

  67. Bigi, A., Cojazzi, G., Panzavolta, S., Ripamonti, A., Roveri, N., Romanello, M., Suarez, K.N., Moro, L.: Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J. Inorg. Biochem. 68, 45–51 (1997)

    Article  Google Scholar 

  68. Lipschitz, S.: Advances in understanding bone physiology: influences of treatment. Menopause Update 12, 2–5 (2009)

    Google Scholar 

  69. Ammann, P., Rizzoli, R.: Bone strength and its determinants. Osteoporos. Int. 14, S13–S18 (2003)

    Article  Google Scholar 

  70. Fei, Y.R., Zhang, M., Li, M., Huang, Y.Y., He, W., Ding, W.J., Yang, J.H.: Element analysis in femur of diabetic osteoporosis model by SRXRF microprobe. Micron 38, 637–642 (2007)

    Article  Google Scholar 

  71. Tzaphlidou, M., Speller, R., Royle, G., Griffiths, J., Olivo, A., Pani, S., Longo, R.: High resolution Ca/P maps of bone architecture in 3D synchrotron radiation microtomographic images. Appl. Radiat. Isotopes 62, 569–575 (2005)

    Article  Google Scholar 

  72. Cummings, S.R., Palermo, L., Browner, W., Marcus, R., Wallace, R., Pearson, J., Blackwell, T., Eckert, S., Black, D., Gr, F.I.T.R.: Monitoring osteoporosis therapy with bone densitometry—Misleading changes and regression to the man. J. Am. Med. Assoc. 283, 1318–1321 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Assoc. Prof. P. Patsalas for providing the Auger facility and for helpful suggestions, and the Horizontal Laboratory Network, University of Ioannina, for the SEM-EDX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Kourkoumelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kourkoumelis, N., Balatsoukas, I. & Tzaphlidou, M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys 38, 279–291 (2012). https://doi.org/10.1007/s10867-011-9247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9247-3

Keywords