Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Probabilistic graph-coloring in bipartite and split graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We revisit in this paper the stochastic model for minimum graph-coloring introduced in (Murat and Paschos in Discrete Appl. Math. 154:564–586, 2006), and study the underlying combinatorial optimization problem (called probabilistic coloring) in bipartite and split graphs. We show that the obvious 2-coloring of any connected bipartite graph achieves standard-approximation ratio 2, that when vertex-probabilities are constant probabilistic coloring is polynomial and, finally, we propose a polynomial algorithm achieving standard-approximation ratio 8/7. We also handle the case of split graphs. We show that probabilistic coloring is NP-hard, even under identical vertex-probabilities, that it is approximable by a polynomial time standard-approximation schema but existence of a fully a polynomial time standard-approximation schema is impossible, even for identical vertex-probabilities, unless P=NP. We finally study differential-approximation of probabilistic coloring in both bipartite and split graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Averbakh I, Berman O, Simchi-Levi D (1994) Probabilistic a priori routing-location problems. Nav Res Logist 41:973–989

    Article  MATH  MathSciNet  Google Scholar 

  • Bellalouna M, Murat C, Paschos VTh (1995) Probabilistic combinatorial optimization problems: a new domain in operational research. Eur J Oper Res 87(3):693–706

    Article  MATH  Google Scholar 

  • Berge C (1973) Graphs and hypergraphs. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Bertsimas DJ (1988) Probabilistic combinatorial optimization problems. PhD thesis, Operations Research Center, MIT, Cambridge, MA, USA

  • Bertsimas DJ (1989) On probabilistic traveling salesman facility location problems. Transp Sci 3:184–191

    Article  MathSciNet  Google Scholar 

  • Bertsimas DJ (1990) The probabilistic minimum spanning tree problem. Networks 20:245–275

    Article  MATH  MathSciNet  Google Scholar 

  • Bertsimas DJ, Jaillet P, Odoni A (1990) A priori optimization. Oper Res 38(6):1019–1033

    Article  MATH  MathSciNet  Google Scholar 

  • Bianchi L, Knowles J, Bowler N (2005) Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms. Eur J Oper Res 161(1):206–219

    Article  MathSciNet  Google Scholar 

  • Bodlaender HL, Jansen K, Woeginger GJ (1994) Scheduling with incompatible jobs. Discrete Appl Math 55:219–232

    Article  MATH  MathSciNet  Google Scholar 

  • Bourjolly J-M, Hammer PL, Simeone B (1984) Node-weighted graphs having the König–Egervary property. Math Program Stud 22:44–63

    MATH  MathSciNet  Google Scholar 

  • Demange M, Grisoni P, Paschos VTh (1994) Approximation results for the minimum graph coloring problem. Inform Process Lett 50:19–23

    Article  MATH  MathSciNet  Google Scholar 

  • Demange M, Grisoni P, Paschos VTh (1998) Differential approximation algorithms for some combinatorial optimization problems. Theor Comput Sci 209:107–122

    Article  MATH  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of NP-completeness. Freeman, San Francisco

    MATH  Google Scholar 

  • Halldórsson MM (1995) Approximating discrete collections via local improvements. In Proceedings of the symposium on discrete algorithms, SODA’95, pp 160–169

  • Hassin R, Khuller S (2001) z-approximations. J Algorithms 41:429–442

    Article  MATH  MathSciNet  Google Scholar 

  • Jaillet P (1985) Probabilistic traveling salesman problem. Technical Report 185, Operations Research Center, MIT, Cambridge, MA, USA

  • Jaillet P (1988) A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper Res 36(6):929–936

    Article  MATH  MathSciNet  Google Scholar 

  • Jaillet P (1992) Shortest path problems with node failures. Networks 22:589–605

    Article  MATH  MathSciNet  Google Scholar 

  • Jaillet P, Odoni A (1988) The probabilistic vehicle routing problem. In: Golden BL, Assad AA (eds) Vehicle routing: methods and studies. North-Holland, Amsterdam

    Google Scholar 

  • Johnson DS (1974) Approximation algorithms for combinatorial problems. J Comput Syst Sci 9:256–278

    Article  MATH  Google Scholar 

  • Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of computer computations. Plenum, New York, pp 85–103

    Google Scholar 

  • Murat C, Paschos VTh (1999) The probabilistic longest path problem. Networks 33:207–219

    Article  MATH  MathSciNet  Google Scholar 

  • Murat C, Paschos VTh (2002a) A priori optimization for the probabilistic maximum independent set problem. Theor Comput Sci 270:561–590. Preliminary version available at http://www.lamsade.dauphine.fr/~paschos/documents/c166.pdf

    Article  MATH  MathSciNet  Google Scholar 

  • Murat C, Paschos VTh (2002b) The probabilistic minimum vertex-covering problem. Int Trans Oper Res 9(1):19–32. Preliminary version available at http://www.lamsade.dauphine.fr/~paschos/documents/c170.pdf

    Article  MATH  MathSciNet  Google Scholar 

  • Murat C, Paschos VTh (2006) On the probabilistic minimum coloring and minimum k-coloring. Discrete Appl Math 154:564–586

    Article  MATH  MathSciNet  Google Scholar 

  • Simon HU (1990) On approximate solutions for combinatorial optimization problems. SIAM J Discrete Math 3(2):294–310

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Th. Paschos.

Additional information

Part of this research has been performed while the second author was with the LAMSADE on a research position funded by the CNRS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgeois, N., Della Croce, F., Escoffier, B. et al. Probabilistic graph-coloring in bipartite and split graphs. J Comb Optim 17, 274–311 (2009). https://doi.org/10.1007/s10878-007-9112-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-007-9112-2

Keywords