Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing unique maximum matchings in \(O(m)\) time for König–Egerváry graphs and unicyclic graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Let \(\alpha \left( G\right) \) denote the maximum size of an independent set of vertices and \(\mu \left( G\right) \) be the cardinality of a maximum matching in a graph \(G\). A matching saturating all the vertices is a perfect matching. If \(\alpha \left( G\right) +\mu \left( G\right) =\left| V(G)\right| \), then \(G\) is called a König–Egerváry graph. A graph is unicyclic if it is connected and has a unique cycle. It is known that a maximum matching can be found in \(O(m\cdot \sqrt{n})\) time for a graph with \(n\) vertices and \(m\) edges. Bartha (Proceedings of the 8th joint conference on mathematics and computer science, Komárno, Slovakia, 2010) conjectured that a unique perfect matching, if it exists, can be found in \(O(m)\) time. In this paper we validate this conjecture for König–Egerváry graphs and unicylic graphs. We propose a variation of Karp–Sipser leaf-removal algorithm (Karp and Sipser in Proceedings of the 22nd annual IEEE symposium on foundations of computer science, 364–375, 1981) , which ends with an empty graph if and only if the original graph is a König–Egerváry graph with a unique perfect matching (obtained as an output as well). We also show that a unicyclic non-bipartite graph \(G\) may have at most one perfect matching, and this is the case where \(G\) is a König–Egerváry graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartha M (2010) Efficient unique perfect matching algorithms. In: Proceedings of the 8th joint conference on mathematics and computer science, Komárno, Slovakia

  • Bartha M, Krész M (2009) A depth-first algorithm to reduce graphs in linear time, In: Proceedings of 11th international symposium on symbolic and numeric algorithms for scientific computing, Timisoara, Romania. IEEE Computing Society, pp. 273–281

  • Bartha M, Krész M (2009) Deciding the deterministic property for soliton graphs. Ars Mathematica Contemporanea 2:121–136

    MathSciNet  MATH  Google Scholar 

  • Belardo F, Li M, Enzo M, Simić SK, Wang J (2010) On the spectral radius of unicyclic graphs with prescribed degree sequence. Linear Algebra Appl 432:2323–2334

    Article  MathSciNet  MATH  Google Scholar 

  • Cechlárová K (1991) The uniquely solvable bipartite matching problem. Oper Res Lett 10:221–224

    Article  MathSciNet  MATH  Google Scholar 

  • Deming RW (1979) Independence numbers of graphs: an extension of the König–Egerváry theorem. Discret Math 27:23–33

    Article  MathSciNet  MATH  Google Scholar 

  • Egerváry E (1931) On combinatorial properties of matrices. Mat. Lapok 38:16–28

    Google Scholar 

  • Favaron O (1982) Very well-covered graphs. Discret Math 42:177–187

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow HN, Kaplan H, Tarjan RE (2001) Unique maximum matching algorithms. J Algorithms 40:159–183

    Article  MathSciNet  MATH  Google Scholar 

  • Golumbic MC, Hirst T, Lewenstein M (2001) Uniquely restricted matchings. Algorithmica 31:139–154

    Article  MathSciNet  MATH  Google Scholar 

  • Hershkowitz D, Schneider H (1993) Ranks of zero patterns and sign patterns. Linear and Multilinear Algebra 34:3–19

    Article  MathSciNet  MATH  Google Scholar 

  • Karp RM, Sipser M (1981) Maximum matchings in sparse random graphs, In: Proceedings of 22nd annual IEEE symposium on foundations of computer science. IEEE, pp 364–375

  • König D (1931) Graphen und Matrizen. Mat. Lapok 38:116–119

    MATH  Google Scholar 

  • Korach E, Nguyen T, Peis B (2006) Subgraph characterization of red/blue-split graphs and König–Egerváry graphs, In: Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithms. ACM Press, New York, pp. 842–850

  • Kotzig A (1959) On the theory of finite graphs with a linear factor II. Mat.- Fyz. Casopis. Slovensk. Akad. Vied 9:136–159

    MathSciNet  MATH  Google Scholar 

  • Krogdahl S (1977) The dependence graph for bases in matroids. Discret Math 19:47–59

    Article  MathSciNet  MATH  Google Scholar 

  • Larson CE (2011) The critical independence number and an independence decomposition. Eur J Comb 32:294–300

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2001) On the structure of \(\alpha \)-stable graphs. Discret Math 236:227–243

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2002) Combinatorial properties of the family of maximum stable sets of a graph. Discret Appl Math 117:149–161

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2003) On \(\alpha ^{+} \)-stable König–Egerváry graphs. Discret Math 263:179–190

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2004) Local maximum stable sets in bipartite graphs with uniquely restricted maximum matchings. Discret Appl Math 132:163–174

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2007) Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids. Discret Appl Math 155:2414–2425

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2011) Very well-covered graphs of girth at least four and local maximum stable set greedoids. Discret Math Algorithms Appl 3:245–252

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2012) Local maximum stable set greedoids stemming from very well-covered graphs. Discret Appl Math 160:1864–1871

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2012a) On the core of a unicyclic graph. Ars Mathematica Contemporanea 5:321–327

    MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2012b) Critical independent sets and König–Egerváry graphs. Graphs Comb 28:243–250

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2013) On maximum matchings in König–Egerváry graphs. Discret Appl Math 161:1635–1638

    Article  MathSciNet  MATH  Google Scholar 

  • Levit VE, Mandrescu E (2014) On the intersection of all critical sets of a unicyclic graph. Discret Appl Math 162:409–414

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Guo J, Shiu WC (2010) The smallest values of algebraic connectivity for unicyclic graphs. Discret Appl Math 158:1633–1643

    Article  MathSciNet  MATH  Google Scholar 

  • Lovász L (1983) Ear decomposition of matching covered graphs. Combinatorica 3:105–117

    Article  MathSciNet  MATH  Google Scholar 

  • Lovász L, Plummer MD (2009) Matching theory. AMS Chelsea Publishing, New York

    MATH  Google Scholar 

  • Micali S, Vazirani VV (1980) An \(O(\left|V\right|^{\frac{1}{2}}\cdot \left|E\right|)\) algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st IEEE symposium on foundations of computer science. IEEE, pp 17–27

  • Sterboul F (1979) A characterization of the graphs in which the transversal number equals the matching number. J Comb Theory Ser B 27:228–229

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y, Shu J (2010) The spread of the unicyclic graphs. Eur J Comb 31:411–418

    Article  MathSciNet  MATH  Google Scholar 

  • Zhai M, Liu R, Shu J (2010) Minimizing the least eigenvalue of unicyclic graphs with fixed diameter. Discret Math 310:947–955

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their valuable comments. We express our special gratitude to the reviewer that suggested to consider our research in the context of Theorem 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim E. Levit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levit, V.E., Mandrescu, E. Computing unique maximum matchings in \(O(m)\) time for König–Egerváry graphs and unicyclic graphs. J Comb Optim 32, 267–277 (2016). https://doi.org/10.1007/s10878-015-9875-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9875-9

Keywords